

EXTENSION OF THE DOUGLAS NEUMANN PROGRAM TO PROBLEMS OF LIFTING. INFINITE CASCADES

by

JOSEPH P. GIESING

Report No. LB 31653

21.38

Revised 2 July 1964

THIS RESEARCH WAS CARRIED OUT UNDER THE BUREAU OF SHIPS FUNDAMENTAL HYDRO-MECHANICS RESEARCH PROGRAM, NS 715-102 ADMINISTERED BY THE DAVID TAYLOR MODEL BASIN

DOUGLAS AND RELY 24 5 ON

EXTENSION OF THE DOUGLAS NEUMANN PROGRAM TO PROBLEMS OF LIFTING, INFINITE CASCADES

by

JOSEPH P. GIESING

Report No. LB 31653

Revised 2 July 1964

THIS RESEARCH WAS CARRIED OUT UNDER THE BUREAU OF SHIPS FUNDAMENTAL HYDRO-MECHANICS RESEARCH PROGRAM, NS 715-102, ADMINISTERED BY THE DAVID TAYLOR MODEL BASIN

Contract Nonr 4308(00)

REPRODUCTION IN WHOLE OR IN FART IS PERMITTED FOR ANY PURPOSE OF THE UNITED STATES GOVERNMENT.

1.0 SUMMARY

The Two-Dimensional Douglas Neumann Program for calculating the potential flow about bodies of arbitrary shape has been extended to handle lifting, infinite cascades. The resulting very general program allows a wide range of heretofore intractable problems to be solved. Essentially, the program can handle any problem in which the flow pattern repeats indefinitely along an axis. In the Douglas Neumann program this axis is the y-axis. This permits the calculation of the flow about a lifting or nonlifting cascade having any stagger angle and spacing and having arbitrary blade geometry. The program can also calculate the flow about more than one cascade. Thus it can handle the interaction problem of two or more parallel cascades.

The Douglas Cascade Program is compared with other theoretical methods, special analytical cases, and experimental data. Program details, among which are input-output format and FORTRAN listing are given in the appendices.

2.0 TABLE OF CONTENTS

			PAGE NO.
10	Summer	-y	1
2.0	Tabl.e	of Contents	5
3.0	List o	of Figures	3
4.0	Notation		5
5.0	Introduction		7
6.0	Theor	у	9
7.0	Examples and Comparisons		16
	7.1.	Tandem Circles	16
	7.2	Multiple Cascades	16
	7.3	Analytic Test Cases	18
	7.4	Experimental Comparisons	18
	7.5	Comparison of the Douglas Method with a Method	19
		Due to I. E. Garrick	
8.0	Acknowledgements		20
	Appendix A		51
	Appendix B		26
	Appendix C		30
	References		41

3.0 LIST OF FIGURES

Ro.	Title	Page No.
Figure 1:	A typical straight line element of the body surface.	11
Figure 2:	Arrangement of data cards.	33
Figure 3:	Vector diagram showing inlet, average, and exit velocities	42
	and angles of attack. The cascade parameters, spacing and	
	stagger are also shown.	
Figure 4:	Pressure distribution on a circle in tandem with an infinite	43
	number of similar circles.	
Figure 5:	Pressure distributions on three circles in cascade. The	44
	central cascade has circulation. SP = 6 chord, $\alpha_{\rm I}$ = 43°,	
	$c_{L_1} = -0.08$, $c_{D_1} = 1.36$, $c_{L_2} = 19.22$, $c_{D_2} = -1.44$, $c_{L_3} = 3.48$,
	$c_{D_3} = 0.08$	
Figure 6:	Pressure distributions on three circles in cascade. The	45
	arrangement shown simulates two cascades with a spacing ratio	2
	$SP_1/SP_2 = 2$. Both cascades are noncirculatory. $SP = 6$,	
	$\alpha_{\rm I}$ = 0, $c_{\rm L_1}$ = 0, $c_{\rm D_1}$ = 0.546, $c_{\rm L_2}$ = 1.31, $c_{\rm D_2}$ = -0.273, $c_{\rm L_3}$ =	
	-1.31, $c_{D_3} = -0.273$.	
Figure 7:	Analytic cascade profile "A".	46
Figure 8:	Comparison of analytic and calculated pressure distributions	47
	on profile "A" in cascade.	
	(a) $C_L = 0$, $\theta = 0^{\circ}$, $\alpha_I = -45^{\circ}$, $SP = 0.538$	
	(b) $C_L = 1.7$, $\theta = 9^\circ$, $\alpha_I = 22.8^\circ$, $SP = 0.538$	
Figure 9:	Comparison of analytic and calculated pressure distribution	49
	on profile "C" in cascade.	
	(a) $C_L = 1.125$, $\theta = 0^\circ$, $\alpha_I = 28.65^\circ$, $SP = 0.795$	
	(b) $C_{I} = 0$, $\theta = 0^{\circ}$, $\alpha_{I} = -30^{\circ}$, $SP = 0.795$	

No.	<u>Title</u>	Page No.
Figure 10:	Comparison of calculated and experimental pressure distri-	51
	butions on an NACA 65-010 airfoil in cascade.	
	(a) $C_L \approx -0.135$, $\theta = -33^\circ$, $\alpha_T = 30^\circ$, $SP = 1.0$	
	(b) $C_L = 0.2$, $\theta = -21^\circ$, $\alpha_I = 30^\circ$, $SP = 1.0$	
	(c) $C_{L} = 0.355$, $\theta = -15^{\circ}$, $\alpha_{I} = 30^{\circ}$, $SP = 1.0$	
Figure 11:	Comparison of calculated and experimental lift coefficient	52
	versus "effective" angle of attack for the NACA 65-010 air-	
	foil in cascade.	
Figure 12:	Comparison of the pressure distribution, as calculated by	53
	I. E. Garrick and by Douglas, of an NACA 4412 airfoil in	
	cascade.	
	(a) $C_L = 1.0$, $\theta = 0^{\circ}$, $SP = 0.968$	
	(b) $C_L = 1.0$, $\theta = 45^{\circ}$, $SP = 1.096$	
Figure 13:	Example problem control and data input sheets	54
	(a) Header card and case control data	
	(b) Control data and x coordinates for the cascade body	
	(c) y coordinates for cascade body	
	(d) Control data and x coordinates for off-body points	
	(e) y coordinates for off-body points	
Figure 14:	Program output sheets for example problem	56
	(a) Input or Basic data	
	(b) Solution at 0° angle of attack	
	(c) Solution at 90° angle of attack	
	(d) Circulatory flow solution	
	(e) Combined solutions for cascade body	
	(f) Combined solutions for off-body points	
Figure 15:	FORTRAN listing of the Douglas Cascade Program	62

4.0 NOTATION

A	Kutta-condition matrix defined in appendix A
c	chord length of cascade blade
co	complex coordinate of body element midpoint
e_1	complex coordinate of body element first endpoint
c ₂	complex coordinate of body element second endpoint
$\mathrm{c}_{\mathtt{L}}$	lift coefficient per cascade blade normalized with U the average velocity modulus, $\frac{2\Gamma}{Uc}$. If some other normalizing velocity, U_{η}
	is used the lift coefficient is $\frac{2\Gamma U}{U_n^2c}$. When a set of cascades is
	considered, C_{L} is the lift coefficient for the set.
c_p	pressure coefficient having the average onset-flow velocity as the
	normalizing velocity
\vec{i} , \vec{j}	unit vectors in the x-and y-directions, respectively
i	complex unit, $\sqrt{-1}$
j, k	midpoint and element subscripts, respectively
K	complex source strength, K = M + i
М	source strength for point source
n, t	unit vectors in the normal and tangential directions, respectively
NC	number of cascades considered
q	surface location of a source
s	surface location of a general point
SP	cascade spacing, the flow pattern repeats with this spacing along
	a prescribed axis
U	modulus of V
$\mathbf{v}_\mathtt{I}$	modulus of $\overline{V_I}$
$^{ extsf{U}}\eta$	modulus of any normalizing velocity \overline{v}_{η}

average onset-flow velocity = $\frac{\overrightarrow{V}_1 + \overrightarrow{V}_E}{2}$ Ŷ **V**(q,s) velocity at s due to a source at q exit velocity, velocity at $x = \infty$ inlet velocity, velocity at $x = -\infty$ W(k,s) invluence of element k at point s influence of element k at the midpoint of element j, W_{jk} W_{.jk} $x_{jk} - i Y_{jk}$ coordinates of a general point x,y x + iy, complex coordinate of a general point average angle of attack measured in the counterclockwise direction α exit angle of attack $\alpha_{\rm p}$ angle of attack of the kth element a inlet angle of attack cascade turning angle Δα Γ circulation about an individual cascade blade ∆¥0 effect of a uniform onset flow at zero angle of attack on the Kutta condition of the mth cascade in a system of several cascades Δ**V**90_m effect of a uniform onset flow at 90° angle of attack on the Kutta condition of the mth cascade in a system of several cascades ΔV effect on the Kutta condition of the mth cascade due to circulatory flow about the nth cascade in a system of several cascades ξ + i η , complex coordinate of a source ζ stagger angle (see figure 3), measured clockwise 5 surface source distribution airfoil trailing-edge angle 7

5.0 INTRODUCTION

The Douglas Neumann Program is a powerful tool for determining the potential flow about one or more arbitrary two-dimensional lifting bodies. The Neumann program is rigorous in the sense that the exact solution is approached in the limit as the number of points describing the body goes to infinity. This powerful method has now been extended to calculate the flow about infinite two-dimensional lifting cascades. Cascade data are used to advantage when working with compressor stages, turning vanes, or propeller blades. A. J. Acosta (Calif. Inst. of Tech.) and H. P. Linhardt (reference 1) have concluded that the use of cascade theory to predict propeller characteristics is accurate even when the propeller is extreme in configuration. These authors tested a low-aspectratio axial-flow pump propeller. Comparison of the experimental results with three-dimensional vortex and two-dimensional cascade theory showed the simple cascade theory to be superior.

A cascade is defined as simply a series of identical bodies equally spaced and identically oriented. There are no restrictions on the body, shape, spacing, and stagger angle. The cascade of bodies may be lifting or nonlifting. In general, the program can handle any problem in which the flow pattern repeats along an axis from plus to minus infinity. Figure 3 shows a double cascade along with a graphical representation of the cascade parameters.

Shown in figures 4, 5, 6, and 7 are some of the extreme configurations a cascade might take, given the flexibility this program affords. The program can also be used to calculate the flow past a series of cascade stages, i.e., more than one cascade. The stages, however, cannot move relative to each other, since this would be an unsteady-flow problem.

In some cases the effect of boundary-layer displacement thickness on the cascade blade is important. In these cases the displacement thickness can be

added to the blade and the resulting thicker blade can be used in the cascade program. This displacement-thickness technique has been tried successfully on a single isolated airfoil.

The Douglas Newmann program with its cascade modification calculates the velocity and pressure distribution normalized to average velocity and lift coefficient and moment coefficient per cascade blade. Also calculated are the inlet and exit velocities and the cascade turning angle. Appendix C gives the FORTRAN listing and all the details of the input and output of the Douglas Cascade Program.

6.0 THEORY

The technique employed by the Neumann Program to solve the fluid-flow problem is to apply a source distribution of appropriate strength on the surface of the body in such a way that the flow normal to the surface of the body is either zero or prescribed. This technique is described in great detail in references 2, 3, and 4. When the Neumann boundary condition is applied, an integral equation in source strength 5 is obtained. This integral equation is

$$-\frac{1}{\sqrt{2}} \cdot \hat{n} = \sigma(s) + \int \sigma(q) A(q,s) dq$$
(1)

where $A(q,s) = \vec{n} \cdot \vec{V}(q,s)$ and V_{∞} is the onset flow.

In the unmodified program V(q,s) is the familiar velocity at s due to a unit source at q. If x,y are coordinates associated with s and ξ , η with q, then

where

$$\nabla (g,s) = \overline{i} \nabla_{x} + \overline{j} \nabla_{y}$$

$$\nabla_{x} = \frac{(x-\xi)}{(x-\xi)^{2} + (y-\eta)^{2}}$$

$$\nabla_{y} = \frac{(y-\eta)}{(x-\xi)^{2} + (y-\eta)^{2}}$$
(2)

or, in complex notation,

$$V_{x} = \frac{1}{Z(s) - \zeta(g)}$$

To modify the program to handle infinite cascades a new velocity at a point s due to a unit source at q in a cascade is used.

This "new" velocity is the sum of the velocities due to a row of sources equally spaced along the y axis. The sum is the series representation of the hyperbolic cotangent function (see Lamb, reference 5, page 71). Thus the

cascade velocity is

$$V_{X}^{-i}V_{Y} = \frac{1}{2SP} \coth \left\{ \frac{\pi}{SP} \left[Z(S) - \zeta(q) \right] \right\}$$

or

$$V_{x} = \frac{\frac{1}{25P} \cosh \left[\frac{\pi}{SP}(x-\xi)\right] \sinh \left[\frac{\pi}{SP}(x-\xi)\right]}{\left\{\sin \left[\frac{\pi}{SP}(y-\eta)\right]\right\}^{2} + \left\{\sinh \left[\frac{\pi}{SP}(x-\xi)\right]\right\}^{2}}$$
(3)

$$V_{Y} = \frac{\frac{1}{2SP} \cos \left[\frac{\pi}{SP} (y - \eta) \right] \sin \left[\frac{\pi}{SP} (y - \eta) \right]}{\left\{ \sin \left[\frac{\pi}{SP} (y - \eta) \right] \right\}^{2} + \left\{ \sinh \left[\frac{\pi}{SP} (x - \xi) \right] \right\}^{2}}$$

where SP is the cascade spacing. The cascade vortex velocity is (Lamb, page 244) simply the cascade source velocity rotated 90° clockwise.

The technique employed to solve the integral equation given in (1) is to approximate the body surface by straight-line elements. The source strength is assumed constant along any one element, but it varies from element to element. Now if the Neumann boundary condition is applied at the midpoints of each of these elements, equation (1) can be written as

$$-\overrightarrow{V}_{\infty j} \cdot \overrightarrow{n}_{j} = \sigma_{j} + \sum_{k=1}^{N} \sigma_{k} \int_{A_{j}(q)} dq$$
(4)

Here we note that A(q,s) is now written $A_j(q)$ since the positions of the general points are now fixed as the element mid-points. Referring to the definition of A(q,s) given for (1), we write

$$A_{j}(q) = \overrightarrow{n} \cdot \overrightarrow{V_{j}}(q)$$
 (5)

 $\overrightarrow{V}_{j}(q)$ is the velocity at the mid-point of the jth element due to a unit source at q.

Let the quantity $\overline{\mathbf{W}}_{jk}$ be defined as

$$\overline{W}_{jk} = \int \overline{V}_{j}(q) dq = \overline{i} \times + \overline{i} Y$$
(6)

For convenience the complex form of W(q,s) or $W_j(q)$ and V(q,s) or $V_j(q)$ will be adopted and used henceforth. Substituting the cascade-velocity source function found in (3) into (6), we have the following

$$W_{jk} = X - iY = \int_{\text{ELEM. }k} V_{j}(q) dq = \int_{\frac{1}{2SP}} \coth \left\{ \frac{\pi}{2P} \left[Z_{j} - S(q) \right] \right\} dq \quad (7)$$

The kth element over which the integration is to be performed is shown in figure 1. From figure 1 the following relations are evident

$$\xi(q) = C_0 + q e^{i\alpha_k}$$

$$d\xi = dq e^{i\alpha_k}$$

$$C_{2k}$$

$$C_{0k}$$

$$BODY$$

$$C_{0k}$$

$$E$$

Figure 1. - A typical straight line element of the body surface.

If the relations of (8) are used, equation (7) may be rewritten as follows:

$$W = e^{-i\alpha_k} \int_{C_{1k}}^{C_{2k}} \coth \left[\frac{\pi}{sP} (z_j - \xi) \right] d\xi$$

which upon integration becomes

$$W = X - iY = \frac{e^{-i\alpha_{k}}}{2\pi} In \left\{ \frac{\sinh\left[\frac{\pi}{sp}\left(Z_{j} - C_{1k}\right)\right]}{\sinh\left[\frac{\pi}{sp}\left(Z_{j} - C_{2k}\right)\right]} \right\}$$
(9)

Equation (9) is the basic cascade source function used in the Douglas Cascade Program. It represents the complex velocity at the jth element midpoint z_j , due to the kth source element in cascade.

If we now use the definition given in equation (6), equation (4) can be rewritten thus:

$$-\overrightarrow{V}_{\infty j} \cdot \overrightarrow{n}_{j} = \sum_{k=1}^{N} \overrightarrow{W}_{jk} \cdot \overrightarrow{n}_{j} \sigma_{k} = \sum_{k=1}^{N} A_{jk} \sigma_{k}$$
(10)

Equation (10) is then solved using equation (9) for the unknown σ_k . Once the σ_k values are known, the velocity and pressure anywhere in the flow field can be calculated.

To solve the general case of a lifting cascade at any angle of attack, "basic" flows are calculated and superimposed in such a way that the correct angle of attack is obtained and the Kutta condition is satisfied. These "basic" flows are the following:

- 1) Flow at zero angle of attack.
- 2) Flow at 90° angle of attack.
- 3) Circulatory flow for each cascade.

Equation (10) is solved for each one of the basic onset flows; here V_{∞} is the onset flow in the equation. Superposition of solutions is possible because the potential equation is linear and the boundary condition on the cascade blades is homogeneous. The details of the superposition technique are given in Appendix A.

In a cascade there is an infinite number of airfoils or blades, each having a circulation. Therefore since the cascade runs along the y-axis, there exists an upwash an infinite distance upstream of the lifting cascade and a downwash an infinite distance downstream. At these distances, the lifting airfoils act like a row of equally spaced vortices. The magnitude of the upwash and downwash due to this row of vortices can be deduced from Lamb (reference 5) as

$$V_{up} = -V_{down} = \frac{\Gamma}{2SP} = \frac{U_n^2 C_{L_n} C}{4U_{SP}}$$
 (11)

where Γ is the circulation per cascade body and SP is the cascade spacing. U_{η} is any convenient normalizing velocity. In the Douglas program U_{η} is just V. (When more than one cascade is involved, Γ is replaced by $\sum_{m=1}^{NC} \Gamma_m$; NC is the number of cascades. Also C_L is the lift coefficient for the set of cascades.) The cascade therefore turns the flow. The upwash and downwash and the cascade turning angle are shown in figure 3. For a cascade, the lift vector is normal to the average onset-flow velocity vector. The inlet and exit velocities can be determined by using (11) for V_{up} and by referring to the vector diagram of figure 3. All velocities will be normalized with the modulus of the average velocity. The inlet and exit velocities are written as follows:

$$\overrightarrow{V}_{I} = \frac{\overrightarrow{V}}{V} + \overrightarrow{J} \frac{\Gamma}{2SPU} = \frac{\overrightarrow{V}}{V} + \overrightarrow{J} \frac{C_{L}c}{4SP}$$
 (12)

$$\vec{V}_{E} = \frac{\vec{V}}{U} - \vec{j} \frac{\Gamma}{2SPU} = \frac{\vec{V}}{U} - \vec{j} \frac{C_{L}c}{4SP}$$

The inlet and exit angles of attac. (see figure 2) can be written as

$$\alpha_{I} = tan^{-1} \left[\frac{\sin \alpha + \frac{\Gamma}{2SP}}{\cos \alpha} \right] = tan^{-1} \left[\frac{\sin \alpha + \frac{C_{L}C}{4SP}}{\cos \alpha} \right]$$

$$\alpha_{E} = tan^{-1} \left[\frac{\sin \alpha - \frac{\Gamma}{2SP}}{\cos \alpha} \right]$$
(13)

Thus the turning angle is

$$\Delta_{\alpha} = \alpha_{I} - \alpha_{E} = tan^{-1} \left[\frac{\frac{\Gamma}{SP} \cos \alpha}{1 - \left(\frac{\Gamma}{2SP}\right)^{2}} \right] = tan^{-1} \left[\frac{\frac{C_{L}C}{2SP} \cos \alpha}{1 - \left(\frac{C_{L}C}{4SP}\right)^{2}} \right]$$
(14)

The <u>average</u> onset flow modulus U is used in the definition of all of the hydrodynamic coefficients and variables in the Douglas Cascade Program. In some cases it may be desirable to normalize the velocities involved with the inlet velocity modulus, $U_{\rm I}$. In that case we write

$$\frac{V_{up}}{U_{I}} = \left(\frac{C_{L_{I}}c}{4s_{P}}\right) \left(\frac{U_{I}}{U}\right)$$

$$C_{L_{I}} = \frac{2U\Gamma}{U_{I}^{2}c}$$

$$MOD. \left(\frac{\overline{V_{I}}}{U_{I}}\right) = I$$

$$\frac{\overline{V_{E}}}{\overline{V_{T}}} = \frac{\overline{V_{I}}}{\overline{U_{T}}} - \overline{j} \left(\frac{C_{L_{I}}c}{2s_{P}}\right) \left(\frac{\overline{U_{I}}}{\overline{U}}\right)$$

$$(15)$$

The exit angle of attack can be obtained from the exit velocity vector. Also the turning angle can be calculated, since the inlet and exit angle of attack are known. To convert from the system normalized with the average velocity to the one using the inlet velocity as the normalizing factor, the following set of conversions can be used:

$$C_{L_{I}} = \left(\frac{U}{U_{I}}\right)^{2} C_{L}$$

$$C_{P_{I}} = 1 - \left(\frac{V}{U}\right)^{2} \left(\frac{U}{U_{I}}\right)^{2}$$

$$\frac{U_{I}}{U} = \frac{\left(\tan \alpha_{I} - \tan \alpha_{E}\right) \left(\frac{25P}{C} \cos \alpha_{I}\right)}{C_{L_{I}}}$$

$$(16)$$

7.0 EXAMPLES AND COMPARISONS

In order to give an idea of the wide class of problems the Program can handle, several cases have been calculated. Figures 3, 4, 5, 5, and 7 present a range of configurations and geometries that can be handled with ease.

To show the accuracy of the Program, comparisons with exact solutions and experimental data are presented. Figures 8, 9, 10, and 11 give these comparisons.

Figure 12 compares the Douglas Cascade Program with a theory developed by Garrick, reference 7.

These figures are now described in detail.

7.1 TANDEM CIRCLES

To illustrate the fact that the Cascade Program can be used for problems not necessarily associated with the usual lifting cascade, the flow about an infinite number of nonlifting bodies in tandem was calculated (see figure 4). In this particular case the bodies are circles; however, any body can be used.

This tander arrangement can be recognised as simply a cascade at 90° angle of attack rotated 90° so that the axis of repetition, the y-axis, becomes the x-axis. Recall that any problem where the flow pattern repeats indefinitely in one direction can be handled by the Douglas Program.

7.2 MULTIPLE-CASCADES

Figures 5 and 6 are included to illustrate the multiple-cascade capability.

Shown in figure 5 are three parallel cascades. The central cascade has circulation, while the other two do not. It would be a mistake to say that

because they have no circulation the two outside cascades are nonlifting. The resultant forces in an interaction problem are not determined by the circulation alone.

It is true that the total lift of the entire set is proportional to the total circulation of the set and that the net drag of the set is zero. However, this is a gross effect for the set and does not hold for the individual members. As is noted in figure 5 the total drag coefficient of the first and last cascade is the negative of the drag coefficient on the second cascade. The total lift coefficient of the cascade set is 22.7.

The trailing edge of the central circle is at -30° from the horizontal and the inlet angle of attack for the cascade set is 43°.

For multiple cascades several limitations must be kept in mind. First, the cascades must be parallel. Second, there can be only one spacing associated with all of the cascades. In general, all the cascades of a set must have the same spacing; however, certain exceptions to this can be made. One of these exceptions is illustrated in figure 6. In this case the spacing of the second cascade is exactly half the spacing of the first. This effect was obtained by putting two ascade bodies in the second cascade. The two bodies of the second cascade are placed one above the other and spaced at exactly one-half the spacing of the first cascade. This process can easily be generalized to many cascades, and the result is that the spacing ratio of two or more cascades will be a rational number. It is noted that there is still only one spacing associated with both cascades of figure 6. This spacing is shown in the figure.

Since neither cascade has circulation, the set has no net lift. However, bodies 2 and 3, of the second cascade, have lift equal but opposite in sign thus the total lift is zero. The drag of the first cascade is equal to the thrust of the second. The drag coefficient is 0.546.

7.3 ANALYTIC TEST CASES

The Douglas Neumann Program with its cascade modification can calculate the flow about any cascade profile. To test this claim, the flow was calculated about the blade section, profile "A", shown in figure 7. This extreme shape was generated from a circle by using a series of conformal transformations. Appendix B gives the details of these transformations. The pressure coefficients obtained from the transformation method are exact. Figures 8a and 8b give the exact and calculated pressure distributions over the blade in a cascade at two different angles of attack. Generally the agreement is good for such an extreme blade shape; however, if greater accuracy were desired, more coordinate points describing the body would be needed. To prevent crowding, not all of the points calculated by the program are shown in these figures. For an example where all of the points are plotted see figures 12a and 12b.

The blade section shown, profile "C" in figure 9, was obtained through a series of conformal transformations in the same manner as the blade of figure 7 (see Appendix B). Also, figures 9a and 9b show the exact and calculated pressure distributions over the blade in cascade at two angles of attack. Agreement between analytic and calculated pressure distributions is better than that of figures 8a and 8b as is to be expected, since the shape is less extreme.

7.4 EXPERIMENTAL COMPARISONS

Shown in figures 10a, 10b and 10c are calculated and experimentally obtained pressure distributions for an NACA 65-010 cascade blade at three values of lift coefficient. The experimental data were taken from reference 6. Figure ll shows the experimental and calculated lift coefficients as functions of the "effective" angle-of-attack for the cascade.

The "effective" angle of attack is simply the stagger angle plus the inlet angle of attack.

18

The calculated and experimental pressure distributions agree quite well except for a small region near the trailing edge. The descrepancies near the trailing edge are probably due to boundary-layer-thickness effects.

7.5 COMPARISON OF THE DOUGLAS METHOD WITH A METHOD DUE TO I. E. GARRICK

I. E. Garrick (reference 7) applied a straight-line cascade transformation in series with a Theodorsen-type transformation to map an airfoil in cascade onto a single circle. Once the transformation was obtained, the pressure distribution over the cascade airfoil could be found. Accuracy can easily be lost in the process of carrying out the operations involved, because of the peculiar nature of the straight-line cascade transformation. This may explain some of the discrepancies between the two methods.

Garrick calculated the flow over an NACA 4412 airfoil in cascade. Shown in figures 12a and 12b are pressure distributions calculated by Garrick and Douglas for the 4412 cascade at two lift coefficients. In figures 12a and 12b all points at which the Program executed a calculation are shown. This will serve as a indication of the number of coordinates used by the Program in the solution of the problem.

8.0 ACKNOWLEDGEMENTS

I wish to acknowledge the contribution made by Mr. Thomas Clissold who constructed the computer program for the Cascade Method and wrote the program input, output description found in Appendix C.

APPENDIX A

Basic Solutions

Eacr "basic solution" is a solution of the potential-fluid-flow problem for a cascade of bodies with a given onset flow. Once determined, these "tasic solutions" are combined in such a way that the desired flow at infinity is obtained and the Kutta condition on each cascade is satisfied. The "basic solutions" needed for this combination procedure are:

- 1) Flow about the several cascades at zero angle of attack,
- 2) Flow about the several cascades at 90° angle of attack.
- 3) Flow about the cascades due to the presence of circulation in the first cascade,
- 4) Flow about the cascades due to the presence of circulation in the second cascade, and so forth.

To obtain circulation about a cascade profile, a unit vortex is placed within the profile. This vortex serves as the onset flow for the circulatory "basic solution".

In a cascade the flow pattern repeats indefinitely along one axis, in this case the y-axis. Therefore it is only necessary to deal with one of the cascade blades. If the Kutta condition holds for one blade of a cascade, it holds for all of them. Thus, in dealing with the cascade, only one blade will be considered.

Each basic solution violates the Kutta condition. A measure of this violation is the difference ΔV of the tangential velocities above and below the trailing edge. The ΔV^* s of the basic solutions are denoted: ΔVO , $\Delta V9O$, and ΔV_{mn} ; where $m=1,2\cdots NC$ and $n=1,2\cdots NC$. Here ΔV_{mn} is the effect on the Kutta condition of the mth cascade due to circulation in the nth cascade. NC is the number of cascades. Added together, the basic solutions

must satisfy the Kutta condition on each cascade and also give the desired flow at infinity.

COMBINATION OF BASIC SOLUTIONS

For a set of <u>isolated</u> airfoirs the following set of linear equations in the unknown circulation strengths satisfies the Kutta conditions on each airfoil. The uniform onset flow at infinity is of speed U and angle of attack α . The set of linear equations with the unknown Γ_m is

$$\Delta VO_1 U cos\alpha + \Delta V9O_1 U sin\alpha + \Delta V_{11} \Gamma_1 + \Delta V_{12} \Gamma_2 + \cdots = 0$$

$$\Delta VO_2 U cos\alpha + \Delta V9O_2 U sin\alpha + \Delta V_{21} \Gamma_1 + \Delta V_{22} \Gamma_2 + \cdots = 0$$

$$\vdots$$

$$\Delta VO_{NC} U cos\alpha + \Delta V9O_{NC} U sin\alpha + \Delta V_{NC1} \Gamma_1 + \Delta V_{NC2} \Gamma_2 + \cdots = 0$$

or, in matrix form,

$$\begin{bmatrix} \Delta V_{11} & \Delta V_{12} & \cdots \\ \Delta V_{21} & & \\ \vdots & & \\ \Delta V_{NC1} & & \\ \end{bmatrix} \begin{bmatrix} \Gamma_1 \\ \Gamma_2 \\ \vdots \\ \Gamma_{NC} \end{bmatrix} = -U \begin{bmatrix} \Delta V O_1 \cos\alpha & + & \Delta V 9 O_1 \sin\alpha \\ \Delta V O_2 \cos\alpha & + & \Delta V 9 O_2 \sin\alpha \\ \vdots & & \\ \Delta V O_{NC} \cos\alpha & + & \Delta V 9 O_{NC} \sin\alpha \end{bmatrix}$$
(A1)

where

 α = angle of attack of the set of airfoils

[= circulation strength per airfoil

For a set of cascades there is a complicating factor, and (Al) cannot be used directly. The angle α , the average angle of attack, is not necessarily known. What is known is any one of the following:

- 1) Cascade or set of cascades at a prescribed average angle of attack (α).
- ?) Cascade or set of cascades at a prescribed inlet angle of attack ($lpha_{
 m I}$).
- 3) Cascade or set of cascades at a prescribed <u>lift</u> coefficient (CL).
- 4) Cascade or set of cascades with a prescribed turning angle ($\Delta\alpha$).

These cases are mutually exclusive. For example: if α_{T} is prescribed the other three cannot be prescribed.

For case (1) equation (A1) can be used directly. For cases (2), (3), and (4) there is an additional unknown, namely, α . Thus an additional equation must be found for these cases. The additional equations needed for cases (2),

(3), and (4), respectively, are:

$$\cos \alpha \tan \alpha_{\rm I} - \sin \alpha - \frac{1}{25P} \sum_{m=1}^{NC} \Gamma_m = 0$$

(A2-2)

$$\frac{2}{\text{Vc}} \sum_{m=1}^{Nc} \Gamma_m - C_L = 0$$

$$\frac{2}{\text{Uc}} \sum_{m=1}^{NC} \Gamma_m - C_L = 0$$

$$\tan \left(\Delta \alpha \right) = \frac{\cos \alpha}{\text{SP}} \sum_{m=1}^{NC} \Gamma_m$$

$$1 - \left[\frac{1}{2\text{SP}} \sum_{m=1}^{NC} \Gamma_m \right]^2 = 0$$
(A2-4)

With some rearranging of the linear equations, (A2-2) and (A2-3) can be incorporated into the set of linear equations (Al). However, (A2-4) cannot be incorporated and must be solved iteratively together with (Al).

When $\alpha_{
m I}$ is the desired input, equation (A2-2) can be incorporated into (A1). The resulting matrix equation is

$$\begin{bmatrix} U\Delta V90_1 & \Delta V_{11} & \Delta V_{12} \cdots \Delta V_{2NC} \\ \vdots & \vdots & \ddots & \vdots \\ U\Delta V90_{NC} & \Delta V_{NC1} & \Delta V_{NC2} \cdots \Delta V_{NCNC} \\ 1 & \frac{1}{2SP} & \frac{1}{2SP} \cdots \frac{1}{2SP} \end{bmatrix} \begin{bmatrix} \tan\alpha \\ \Gamma_1/\cos\alpha \\ \Gamma_2/\cos\alpha \\ \Gamma_2/\cos\alpha \end{bmatrix} = \begin{bmatrix} -U\Delta V0_1 \\ \vdots \\ -U\Delta V0_{NC} \\ \tan\alpha_1 \end{bmatrix}$$
(A3)

When the lift coefficient C_L is input, equation (2-3) can be used with (Al) in the following manner. First we may write

$$\begin{bmatrix} U\Delta V_{9}O_{1} & \Delta V_{11} & \Delta V_{12} & \cdots & \Delta V_{1NC} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ U\Delta V_{9}O_{NC} & \Delta V_{NC1} & \Delta V_{NC2} & \Delta V_{NCNC} \end{bmatrix} \begin{bmatrix} \tan\alpha \\ \Gamma_{1}/\cos\alpha \\ \Gamma_{2}/\cos\alpha \end{bmatrix} = \begin{bmatrix} -U\Delta V_{0} \\ -U\Delta V_{0} \\ \vdots \\ -U\Delta V_{0} \\ C \end{bmatrix} (A^{1})$$

$$0 \qquad \frac{2}{C} \qquad \frac{2}{C} \qquad \cdots \qquad \frac{2}{C} \qquad C \qquad C \\ C \leq C \qquad \cdots \qquad C \end{bmatrix}$$

In the above set of linear equations notice that $\cos\alpha$, with α an unknown, still appears on the right-hand side of the equation. To solve this set of equations, define A as

$$A = \begin{bmatrix} 0 & \frac{c}{2} & \cdots & \frac{c}{2} \\ 0 & \frac{c}{2} & \cdots & \frac{c}{2} \end{bmatrix}$$

Let A^{-1} , the inverse of A, be defined as

$$A^{-1} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1NC} \\ a_{21} & & & & & \\ \vdots & & & & & \\ a_{NC1} & \cdots & & & a_{NCNC} \end{bmatrix}$$

Then (F4) becomes

$$\begin{cases}
\tan \alpha \\
\Gamma_{1/\cos \alpha} \\
\vdots \\
\Gamma_{NC/\cos \alpha}
\end{cases} = A^{-1}
\begin{cases}
-U\triangle VO_{1} \\
-U\triangle VO_{L} \\
\vdots \\
-U\triangle VO_{NC} \\
C L/\cos \alpha
\end{cases}$$

and therefore

$$\tan\alpha = \Delta VO_1 a_{11} + \Delta VO_2 a_{12} + \cdots + (c_{L/\cos\alpha}) a_{1NC}$$
(A5)

Equation (A5) can then be used to solve for $\cos\alpha$. Equations (A4) and (A5) represent the solution when $C_{\rm L}$ is input.

As has been stated before, (Al) and (A2-4) must be solved iteratively when the turning angle $\Delta\alpha$ is desired.

When dealing with the usual case of a single cascade, the equations become very simple. Equation (Al) reduces to one equation and the matrix of (A3) is of order two and its solution is trivial.

APPENDIX B

Analytic Cascade Test Cases

In order to check the Douglas Cascade Program, several exact cascade solutions were generated by conformal transformation methods. Specifically, a circle was mapped by a series of transformation functions into a profile in cascade. The final shape could not be determined exactly anead of time but certain characteristics could be controlled.

The first in the series of mapping functions was the Karman-Trefftz transformation. This function maps a circle in the complex S-plane onto an airfoil shape in the complex Q-plane. The transformation is

$$\frac{Q - rd}{Q + rd} = \left(\frac{S - d}{S + d}\right)^{r}$$
(B1)

The real constant r determines γ , the trailing-edge angle, by the relation

$$\gamma = \pi (2 - r)$$
 (B2)

The final airfoil shape is determined by the location of the circle with reference to the S coordinate system. The real constant d is the distance from the origin to the intersection of the circle with the real S axis. This intersection maps to the trailing edge of the airfoil. This mapping is very similar to the Joukowski transformation, in that a displacement of the circle toward the negative real S-axis produces thickness and a displacement toward the positive imaginary S-axis produces positive camber. Thus these three parameters determine the Karman-Trefftz airfoil: (1) the trailing-edge-angle constant, r; (2) the radius of the circle, a; and (3) the location of the center of the circle in the S coordinate system. For profile "A" r = 1.8,

a = 1.0 and the center location is (-0.1, $1/\sqrt{2}$ i). For profile "C" r = 1.85, a = 1.0, and the center location is (-0.02, 0.5i).

The second and last transformation takes the Karman-Trefftz airfoil in the Q-plane into some profile in a cascade in the final z-plane by using the following transformation:

$$z = \ln \left(\frac{Q - A}{Q - B} \right)$$
 (B3)

The spacing of the resulting cascade is always 2π , and A and B are complex quantities. The singular points at A and B must be outside of the airfoil and must not touch its surface. Essentially, the points A and B in the w-plane go to plus and minus infinity, respectively, in the z-plane. The closer the points are to the airfoil surface, the longer the cascade profile. For convenience of computation, the points A and B are not selected in the airfoil plane but in the circle plane. In the circle plane they are called A' and B'. For profile "A"

 $A^{i} = 0.057 + 0i$, $B^{i} = -1.1 + 0.4i$. For profile "C"

A' = 1.0960° + 0i, B' = -1.08690° + 0i. To determine the coordinates of A and B the transformation of (B6) is used with A' and B' in place of S and A and B in place of Q.

To obtain the flow field in the z-plane, the complex potential must be differentiated.

If F is this complex potential and w the complex velocity,

$$w(z) = \frac{dF(z)}{dz} = \frac{dF(S)}{dS} \frac{dS}{dQ} \frac{dQ}{dz}$$
(B4)

The term $\frac{dS}{dQ}$ can be obtained from (B1)

$$\frac{dS}{dQ} = \frac{S^2 - d^2}{Q^2 - r^2 d^2} \tag{B5}$$

The term $\frac{dQ}{dz}$ can be obtained from (B3)

$$\frac{dQ}{dz} = \frac{Q^2 - Q(A+B) + AB}{A - B}$$
 (Bo)

The derivative $\frac{dF(S)}{dS}$ is the complex velocity in the circle plane; i.e., it represents the flow field about the circle. The question to consider is: in what flow field is the circle immersed? The answer lies in the transformation (B3), i.e., the mapping function that takes the Karman-Trefftz airfoil to a profile in cascade. It can be shown that a source at B and a sink at A in the airfoil plane give a uniform flow from minus to plus infinity in the cascade plane. It can also be shown that a vortex at each of these points gives a vertical component to the uniform flow in the cascade plane. Therefore the following relations hold:

$$U_{\rm I} \cos \alpha_{\rm I}$$
 = source strength, M, at B

 $U_{\rm I} \sin \alpha_{\rm I}$ = vortex strength, Γ , at B

 $U_{\rm E} \cos \alpha_{\rm E}$ = sink strength, M, at A

 $-U_{\rm E} \sin \alpha_{\rm E}$ = vortex strength, Γ , at A

To preserve continuity of mass in the cascade plane, the source strength at B must be equal to the sink utrength at A. The flow in which the cylinder is immersed is ther renerated by a source and vortex at B and a sink and vortex at A.

It can be shown that the circulation about the cascade profile is the nemative difference of the strengths of the vortexices located a. A and B. Thus all circulations add up to zero. The onset flow has now been determined and therefore the flow about a circle in this caset flow can be determined. The complex potential function for this flow is

$$F = K_1 \ln(S-A) + \overline{K}_1 \ln(S - \frac{a^2}{\overline{A}}) + K_2 \ln(S-B) + \overline{K}_2 \ln(S - \frac{a^2}{\overline{B}})$$
 (B8)

where a is the circle radius and K is the complex source strength M $+ \Gamma$ i. M is the source mass flow and Γ is the circulation. The complex velocity is just the derivative of F and is

$$\frac{dF}{dS} = \frac{K_1}{S - A} + \frac{\overline{K}_1}{S - \frac{a^2}{A}} + \frac{K_2}{S - B} + \frac{C_2}{S - \frac{a^2}{B}}$$
(B9)

$$K_1 = U_1(\cos\alpha_I + i \sin\alpha_I), \quad K_2 = -U_I(\cos\alpha_I + i \frac{U_E}{U_I} \sin\alpha_E)$$

If the expressions for the derivities of (B_T) , (B_L) and (B_T) are substituted into equation (A_T) and if S takes the values of the coordinates of the circle the velocity over the surface of the cascade body in the z-plane can be determined. In these formulas the velocities are normalized with the inlet velocity modulus U_T .

APPENDIX C

Program Input and Output

A summary of the Program input is presented before the detailed explanation is given.

As is stated in the text, one or more cascade bodies of arbitrary shape can be handled by the Program. However, there are three practical restrictions on the input, as follows:

- (1) The cascade body or bodies must be of finite thickness.
- (2) The maximum number of bodies with circulation is 8.
- (3) The maximum number of points describing all of the bodies and off-body points is 500.

Each body considered is a lifting body with a stagnation point at the trailing edge, unless otherwise specified in the input. It is assumed in the program that the first coordinate point input is the trailing edge. The surface coordinates are input, starting from the trailing edge and progressing around the body in the clockwise direction. The last point of a body must be the first point repeated. However, if the body is ron-closed and non-lifting the last point is not the first point repeated.

In addition to calculating the flow on the cascade-body surface, the Program can calculate the flow at points in the flow field. The coordinates of these off-body points are input in the same manner as the coordinates of the cascade body.

All coordinates, whether bod_-surface or off-body coordinates, may be scaled, rotated, and translated. The Program executes these operations in the order named.

For diagnostic purposes the two matrices $A_{jk} = \overline{y}_{jk} \cdot \hat{n}$ and $B_{jk} = \overline{y}_{jk} \cdot \hat{n}$ and $B_{jk} = \overline{y}_{jk} \cdot \hat{n}$ can be printed out.

Input Data

Each case must consist of a header card, case control data, body control data, and coordinate data. The header card contains the description of the case, control flags, and case number. The case control data specify certain constants used in the computation. The body control data specify the amount of coordinate data being input and constants used to modify the coordinate data. The coordinate data describe either the two-dimensional cross section of the body or off-body points. All data cards must contain sequence numbers in card columns 77 through 80, so that the data may be sorted. If any data cards are found to be out of sequence, the program will discontinue execution.

The data must be arranged in the following order (see figure 2):

- 1. Header Card (1 card)
- 2. Case Control Card (1 card)
- 3. Body Control Cards (2 cards)
- 4. Coordinate Data Cards (Variable number of cards)

Items 3 and 4 are repeated for each body (if more than one Jody is being considered) and for off-body points, if any. The Y coordinates for each body, or off-body points, must always start on a new card, and must always follow the X coordinates. Additional cases may be run by placing additional sets (items 1 through 4) one after another.

If additional cases are to be run using some or all of the previous untransformed coordinate data, the "Subcase" capability is used. All that

need be input are the body control cards, with the "Subcase" flag marked, that will transform the coordinates of the previous case in a manner desired for the present case.

If additional bodies are to be added their coordinates are input in the normal manner, without the "Subcase" flag, following the body control cards mentioned above. If, in additional cases, bodies are to be deleted or replaced these bodies must appear last in the sequence of bodies in the original case. To delete body coordinates simply omit the body control cards for that body.

When replacing a body for a subcase simply introduce the new body control cards and coordinates in the place of the replaced body.

As an illustration, if it is desired to run two Cascades, call them A and B, and then to delete B and run A alone, or with a new body C, the following procedure is followed.

Input A as the first body and B as the second as shown in figure 2. Then write new header and case control cards for the second case, placing them in back of the y cards for body B. The body control cards for A are written with the "Subcase" flag marked. To omit body B simply omit the body control cards for body B. If a new body C is to be input in place of B, its body control cards followed by its coordinate cards would be input following the body control cards for A.

A second type of subcase capability exists. If only the <u>case</u> control data is to be changed for a second case simply mark the flag in card column 8 and write out the new case control data. For example, if the calculation is desired at a second value of C_L simply write an additional header card and case control card with the new value of C_L . This may be repeated indefinitely.

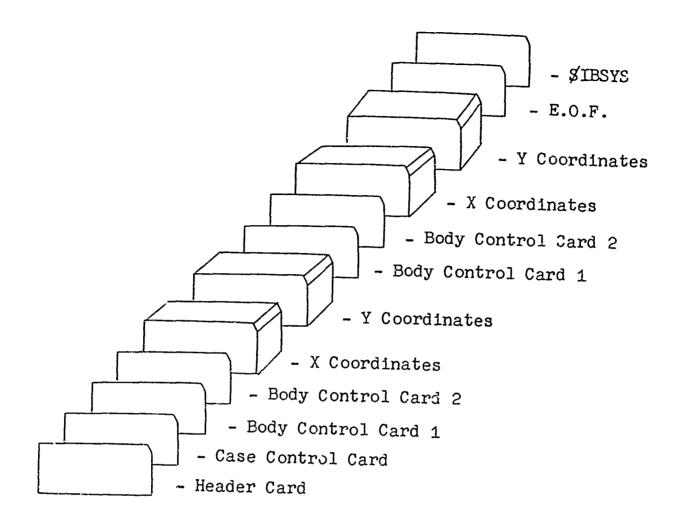


Figure 2. - Arrangement of data cards

Every complete job must be followed by an end-of-file-card (7-8 punch in card column 1) and a \$IBSYS card (\$IBSYS in card columns 1-6). Another case may be run by placing a header card, case control card, etc., after the last Y coordinates of the first case. Although not part of the data, an end-of-file-card must always follow the program deck, so that the data for any job are always proceded by and followed by end-of-file cards.

Header Card:

Card column 1 must always be filled with any nonzero integer that indicates the number of bodies being input. This integer must not be larger than 8.

Card columns 2-12, when punched with any nonzero integer, activate flags that indicate the following:

Cerd column:

- 2 Flow is to be determined at points off the body.
- α is input for use in the combination equations for airfoils.
- 4 Ac is input for use in the combination equations for airfoils.
- Inlet α is input for use in the combination equations for airfoils.
- C_{τ} is input for use in the combination equations for airfoils.
- 7 The matrix of influence coefficients is to be printed out.
- 8 Go directly to combination solution using basic velocity solutions of the previous case.
- 9-12 Not used.
- 13-60 This description of the case will be printed on each section of output.
- 63-68 This case number will be printed at the beginning of the output.
- 77-80 A sequence number must appear in these columns.

Case Control Data:

All of the input items defined in this section, with the exception of CHORD, are assumed to be zero if no value is input.

CHORD The chord length to be used in computations for this case. It will be assumed to be 1.0 if no value is input. Any value input must appear with a decimal point.

SPACING The spacing between the bodies of the infinite cascade. A decimal point must be specified.

The lift coefficient to be used in the combination equations C_{T.}

for airfoils. A decimal point must be specified.

The angle of attack (in degrees) to be used in the combinaα

tion equations for airfoils. A decimal point must be speci-

fied.

INLET a The inlet angle (in degrees) to be used in the combination

equations for airfeils. A decimal point must be specified.

The cascade turning angle (in degrees) to be used in the Δα

combination equations for cascades. A decimal point must

be specified.

Body Control Data:

Body Control Card 1

NN The number of points on the body being input. The sum of

all the NN for all bodies in a case must not be greater

than 500. This number must not specify a decimal point,

and it must be punched at the far right of its field (right-

justified).

MX The factor used to multiply all x coordinates.

assumed to be 1.0 if no value is input. A decimal point

must be specified.

The factor used to multiply all y coordinates. Otherwise, MY

> same as MX.

THETA - Stagger

Angle

The angle (in degrees) through which all points are to be rotated about the origin in the clockwise direction (stagger angle). A decimal point must be specified.

ADDX The constant to be added to all x coordinates. A decimal point must be specified.

ADDY The constant to be added to all y coordinates. A decimal point must be specified.

Body Control Card 2

BDN The body sequence number. This number must be a nonzero integer if body coordinates follow; it is zero only if off-body coordinates follow.

This is a flag that must be any nonzero integer only if the body whose coordinates follow is to be considered a nonlifting or noncirculatory body.

SUBCASE

This is a flag that directs the program to use the unmodified coordinates of the body of the previous case. It must be any nonzero integer.

The coordinates of the moment center to be used when the YMC combination equations for airfoils are used. A decimal point must be specified.

Coordinate Data:

In inputting the body coordinates, it is essential that the coordinate data start at the body <u>trailing edge</u>, progress around the body in the clockwise direction and that the last point input be the first point repeated for a closed body only. The example problem illustrates this procedure in figure 13b and 13c.

X The x coordinates of the points defining the body. (The x coordinates of the off-body points if BDN is zero). A

decimal point must be specified.

The y coordinates of the points defining the body. (The y coordinates of the off-body points if BDN is zero). A decimal point must be specified.

The x coordinates must precede the y coordinates in the deck arrangement. There must be MN x coordinates and NN y coordinates.

Output:

All sections of output, with the exception of the matrix printout, is preceded by the following header:

DOUGLAS AIRCRAFT COMPANY

LONG BEACH DIVISION

The information contained on the header card and the case control card is printed on the first page of output. On this page, FLAG 2 corresponds to card column 2 on the header card, FLAG 3 to card column 3, and so on.

The next section of output consists of basic data, i.e., control and coordinate data, for each body. The body control data are printed out first; the column headers follow:

X Y DELTAS SUMDS D'ALPHA

The X and Y columns list the modified x and y coordinates and the midpoints of the element formed by two consecutive body points. A modified coordinate is one that has been scaled, "otated and translated according to the input. The column headed by DELTS specified the length of the element formed by two consecutive body points, SUMDS shows a running sum of the DELTAS column, and DALPHA shows the angle between two consecutive elements.

If off-body points are input, the following column headers are printed out after the basic data for all of the bodies:

X-OFF Y-OFF

These columns merely list the modified off-body points.

If FIAG 7 is punched (card column 7 on the header card), the A_{jk} and B_{jk} matrices are printed cut after the basic data. Both matrices are printed out in row order across the page.

If off-body points are being run, A_{jk} and B_{jk} off-body matrices are formed and are printed out after the on-body matrices.

The next section of output consists of the original x and y coordinates and the midpoints of the elements formed by these coordinates, the velocities at the midpoints of the elements (V), and the corresponding pressure coefficients (CP) and source densities (SIGMA). This output is repeated for each onset flow i.e., basic solution.

The combination solution follows the basic solutions. The combination solution is a suitable combination of the basic solutions in such a way that the Kutta condition is met and the other input requirements satisfied. The format is exactly the same as that of the preceding solutions for one onset flow, except that the SIGMA column is replaced by a DELTAS column, which specifies the lengths of the original, unmodified elements. Also shown are computed and input constants that apply to the combination solution: spacing, alpha, X_{mc} , Y_{mc} , inlet alpha, exit alpha, inlet velocity, exit velocity, and delta alpha.

The last section of output shows the solution at the points off the body. The column header for this section is simply:

X Y YXL VYL

where the X and Y columns list the off-body points and the VXL and VYL columns list the X and Y components of velocity at the specified off-body point.

Example Problem

To illustrate the input procedure and to show and example of computed output, an example problem is presented. The problem consists of a cascade of circles of unit radius, spaced three radii apart. The cascade is at an average angle of attack of 10°. The only coordinate modification is a rotation of 180° to place the first coordinate point at the desired trailing-edge position which, in this problem, is on the x-axis. (see figure 13a) The circle is composed of thirty coordinate points spaced equally around the perimeter. The input coordinates (see figure 13r and 13c) progress in the clockwise direction.

The example problem also shows the input and output for four off-body points. The coordinates of these points are input in the same manner as the circle coordinates (see figures 13d and 13e) except that the flag BDN is marked O.

The output for the example problem is shown in figures 14a through f.

Figure 14a shows the basic data, i.e., the input data and the transformed coordinates. The basic data are given on the first three pages of output.

Figures 14b, c, and d show the output sheets that give the three basic flow solutions: the solution at 0° angle of attack, the solution at 90° angle of attack, and the solution due to a circulatory flow. Figure 14e shows the

output sheet that gives the combination solution for an average angle of attack of 10°. Also shown on the output of figure 14e are the following:

- (1) Inlet and exit velocity and angle of attack
- (2) Cascade lift and moment coefficient and the x and y force coefficients
- (3) Spacing
- (4) Cascade turning angle

Figure 14f shows the output sheet for the off-body point velocities.

Figure 15 gives a complete FORTRAN IV listing of the Douglas Cascade Program. Ten tape units are needed on the computer for this program.

REFERENCES

- 1. Acosta, A. J., Lindhardt, H. D.: Note on the Application of Cascade Theory to Design of Axial-Flow Pumps. ASME Paper No. 62-WA-222 Nov. 1963.
- 2. Smith, A. M. O., and Pierce, Jesse: Exact Solution of the Neumann Problem.

 Calculation of non-Circulatory Plane and Axially Symmetric Flows About or

 Within Arbitrary Boundaries. Douglas Aircraft Company Report No. ES 26988,

 April 1958.
- 3. Hess, J. L.: Calculation of Potential Flow About Bodies of Revolution
 Having Axes Perpendicular to the Free Stream Direction. Douglas Aircraft
 Company Report No. ES 29812, May 1960.
- 4. Hess, J. L., Smith, A. M. O.: Calculation of Non-Lifting Potential Flow About Arbitrary Three-Dimensional Bodies. Douglas Report ES 40622, March 1962.
- 5. Lamb H.: Hydrodynamics. Cambridge University Press, 1932.
- 6. Herrig, L. J., Emery, J. C., Erwin, J. R.: Systematic Two-Dimensional Cascade Tests of NACA 65-Series Compressor Blades at Low Speeds. NACA TN 3916, Feb. 1957.
- 7. Garrick, I. E.: On the plane potential flow Past a Lattice of Arbitrary Airfoils. NACA Report 788, 1944.

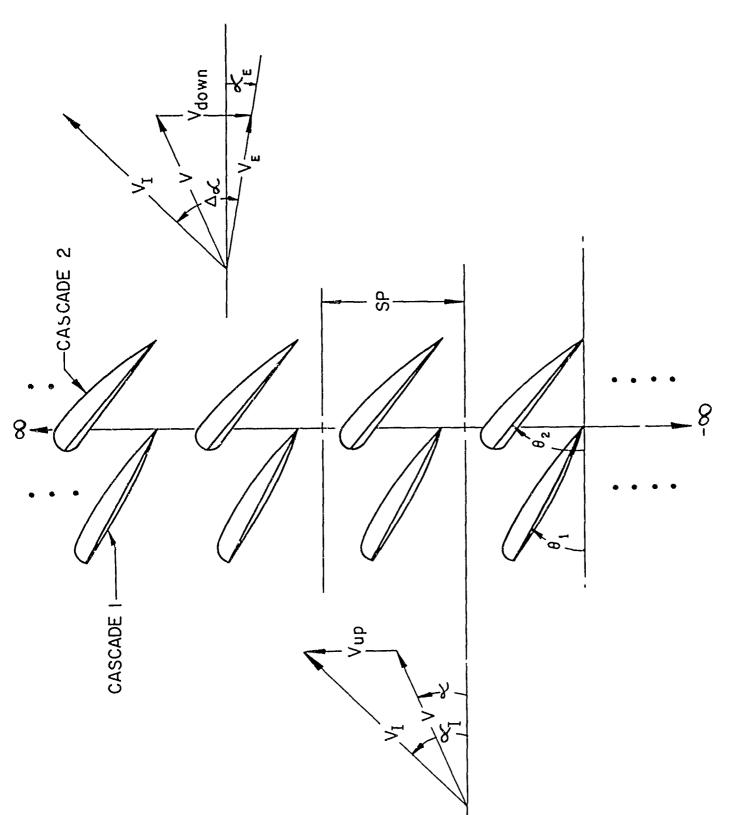


Figure 3. - Vector diagram showing inlet, average, and exit velocities and angles of attack. The cascade parameters, spacing and stagger are also shown.

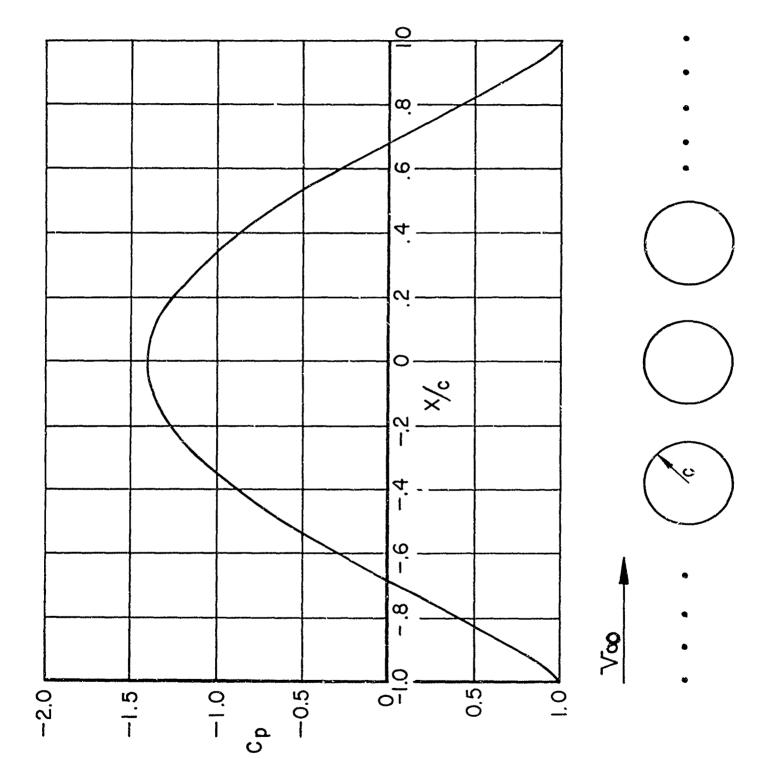


Figure 4. - Pressure distribution on a circle in tandem with an infinite number of similar circles.

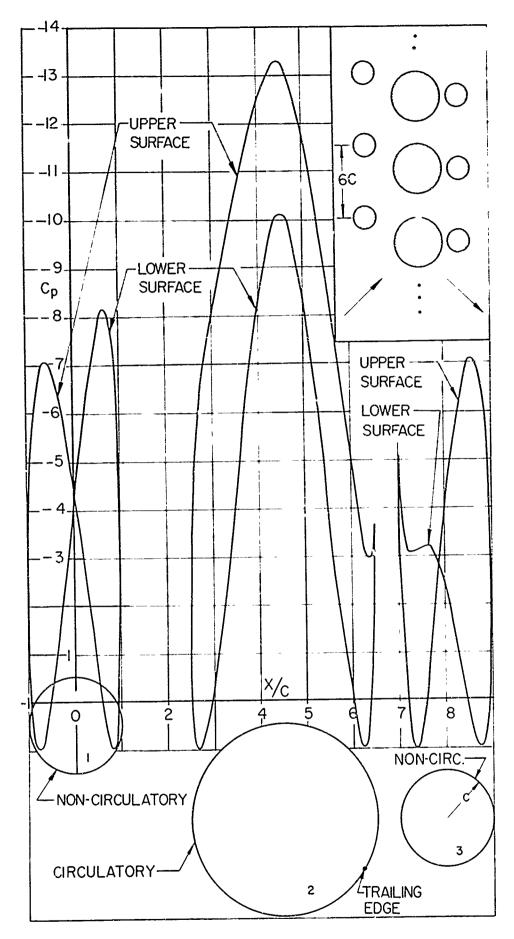


Figure 5. Pressure distributions on three circles in cascade. The central cascade has circulation. SP = 6 chord, $\alpha_{\rm I}$ = 43°, $C_{\rm L_1}$ = -0.08, $C_{\rm D_1}$ = 1.36, $C_{\rm L_2}$ = 19.22, $C_{\rm D_2}$ = -1.44, $C_{\rm L_3}$ = 3.48, $C_{\rm D_3}$ = 0.08

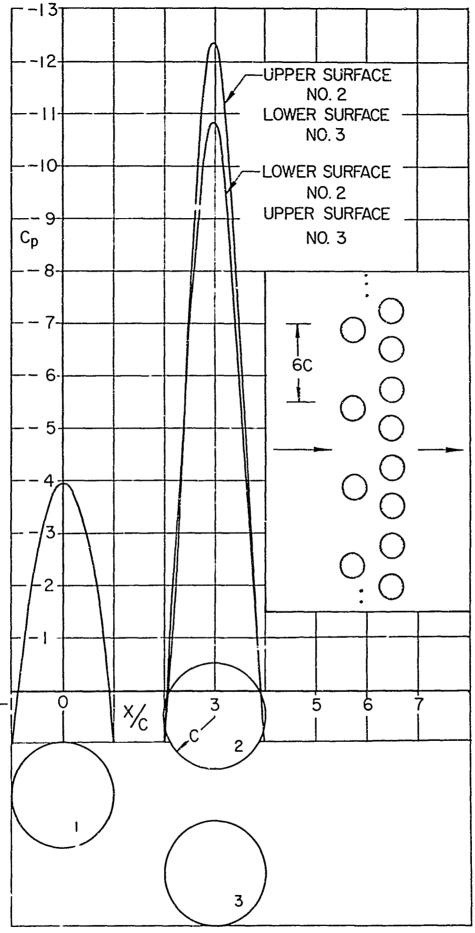


Figure 6. Pressure distributions on three circles in cascade. The arrangement shown simulates two cascades with a spacing ratio, $SP_1/SP_2 = 2$. Both cascades are non-circulatory. SP = 6, $\alpha_1 = 0$, $C_{L_1} = 0$, $C_{D_1} = 0.546$, $C_{L_2} = 1.31$, $C_{D_2} = -0.273$, $C_{L_3} = -1.31$ $C_{D_3} = -0.273$.

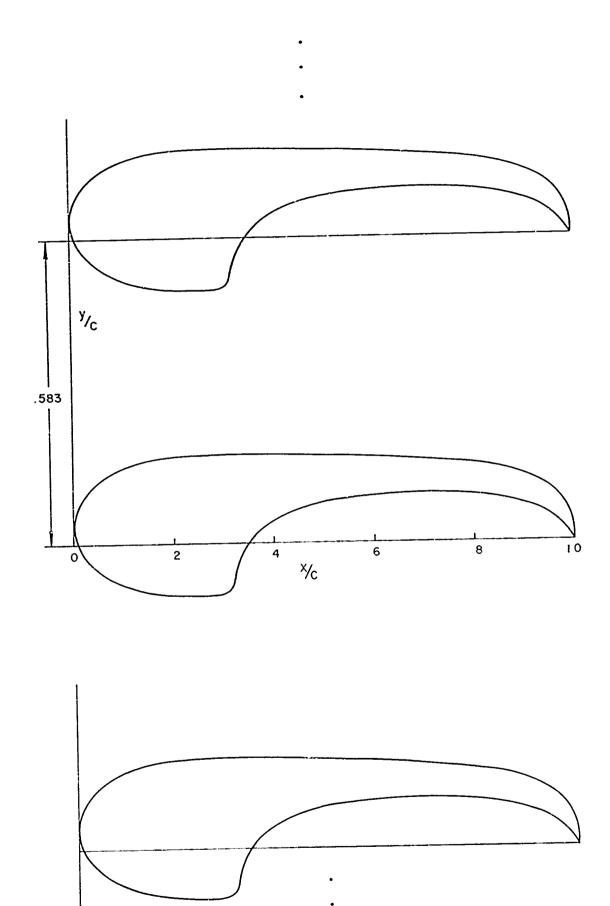


Figure 7. - Analytic cascade profile "A."

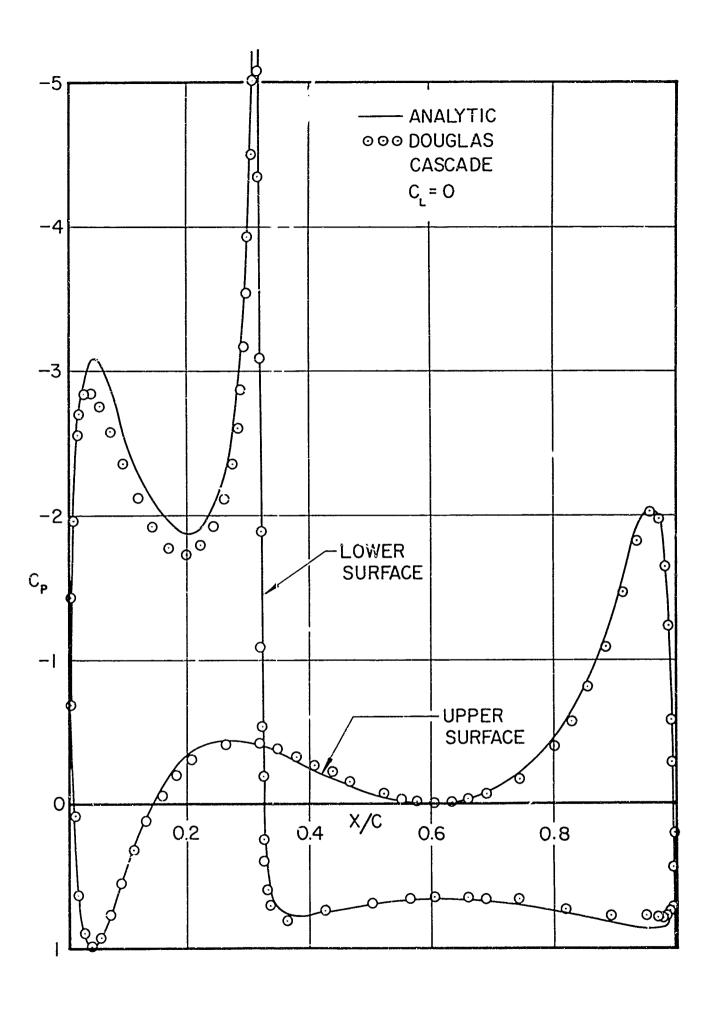


Figure 8. Comparison of analytic and calculated pressure distributions on profile "A" in cascade. (a) $C_L = 0$, $\theta = 0^\circ$, $\alpha_1 = -45^\circ$, SP = 0.538

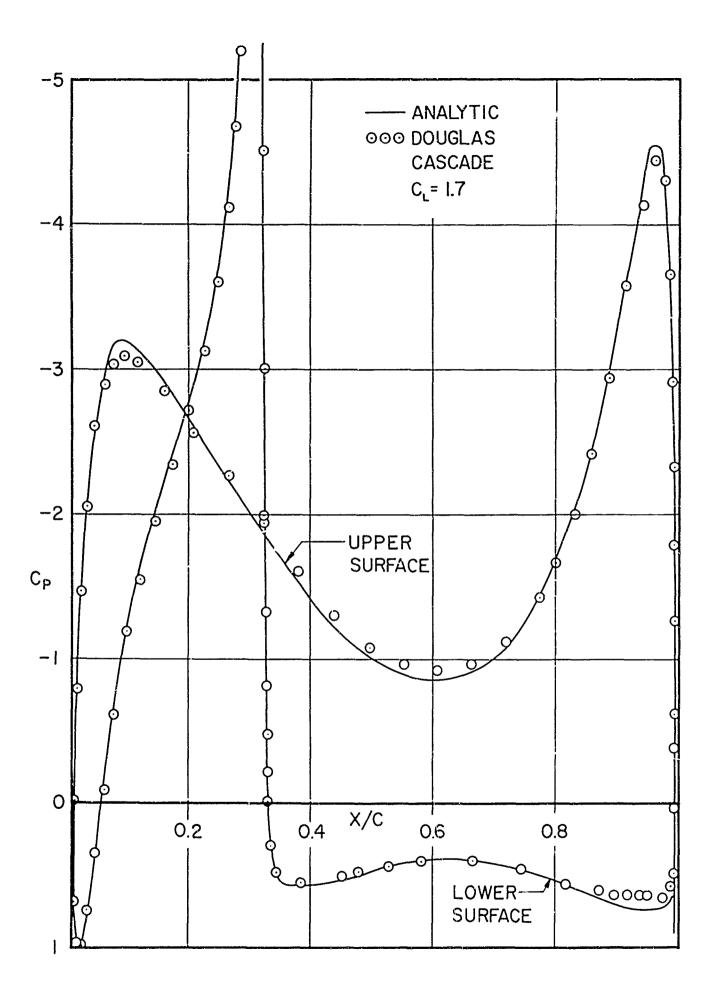


Figure 8. - Continued

(b) C
$$_{L}$$
 = 1.7, θ = 0°, α_{1} = 22.8°, SP = 0.538

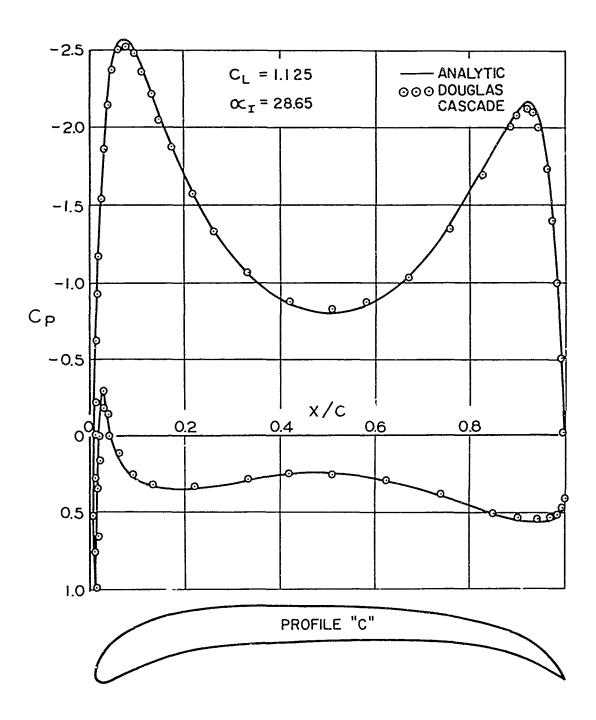


Figure 9. Comparison of analytic and calculated pressure distribution on profile "C" in cas cade. (a) $C_L = 1.125$, $\theta = 0^\circ$, $\alpha_i = 28.65^\circ$, SP = 0 795

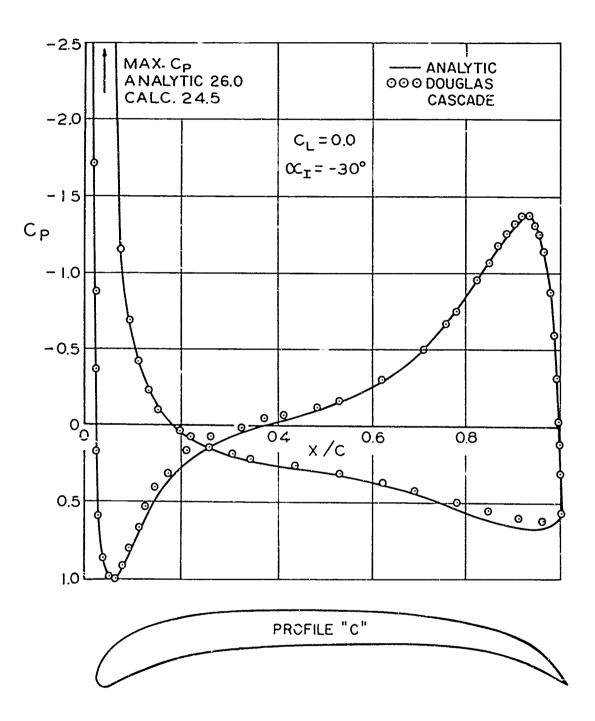


Figure 9. - Continued

(b)
$$C_L = 0$$
, $\theta = 0^\circ$, $\alpha_i = -30^\circ$, $SP = 0.795$

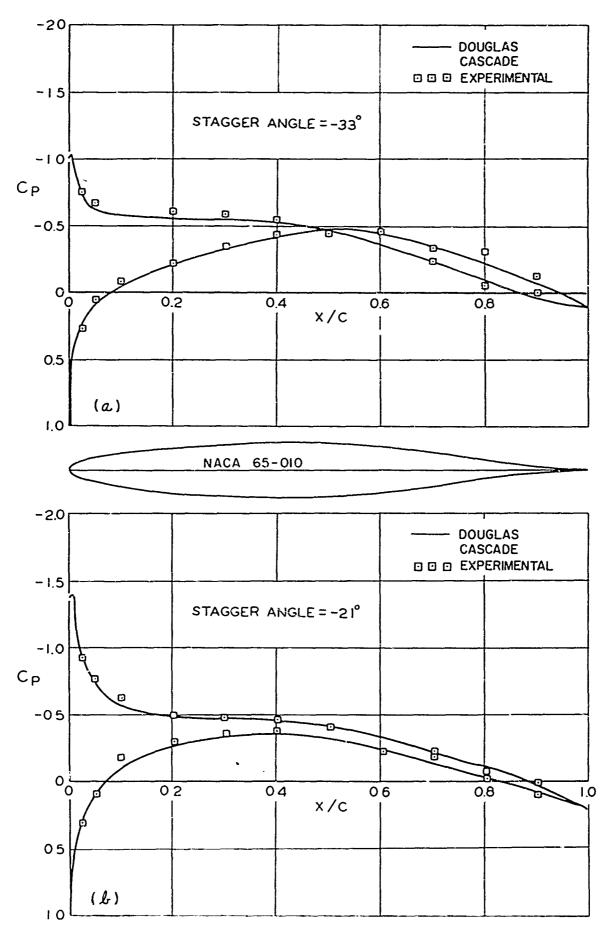


Figure 10. - Comparison of calculated and experimental pressure distributions on an NACA 65-010 airfoil in cascade. (a) $C_L = -0.135$, $\theta = -33^\circ$, $\alpha_1 = 30^\circ$, SP = 1.0. (b) $C_L = 0.2$, $\theta = -21^\circ$, $\alpha_1 = 30^\circ$, SP = 1.0

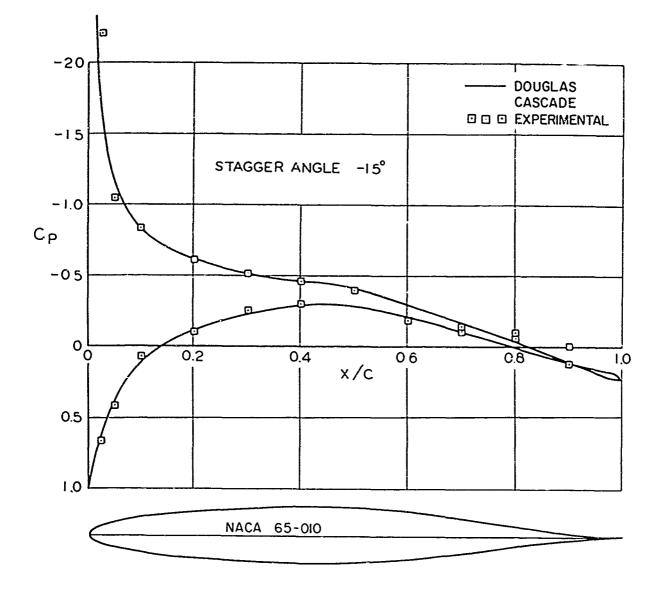


Figure 10. - Continued

(c) C
$$_{\rm L}$$
 = 0.355, θ = -15°, $\alpha_{\rm I}$ = 30°, SP = 1.0

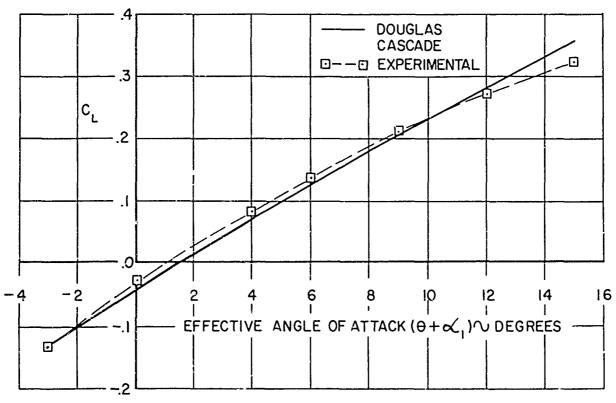


Figure 11. Comparison of calculated and experimental lift coefficient versus "effective" angle of attack for the NACA 65-010 airfoil in cascade.

This Document Contains Missing Page/s That Are Unavailable In The Original Document

OR are
Blank-pg.
Hhat have
Been Removes

BEST AVAILABLE COPY

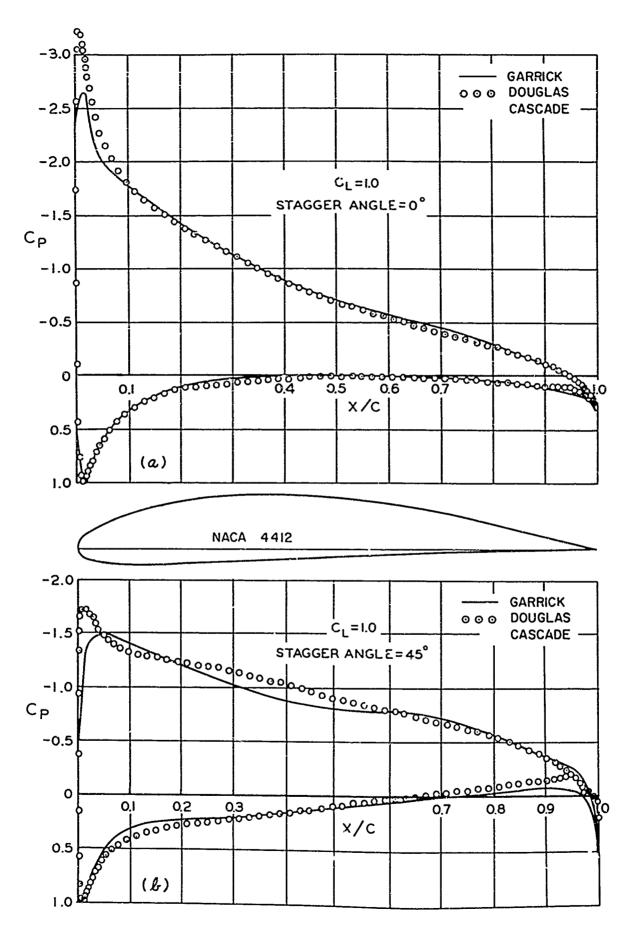


Figure 12. Comparison of the pressure distribution, as calculated by I. E. Garrick and by Douglas, of an NACA 4412 airfoil in cascade. (a) $C_L = 1.0$, $\theta = 0^\circ$, SP = 0.968

(b) $C_L = 1.0$, $\theta = 45^{\circ}$, SP = 1.096

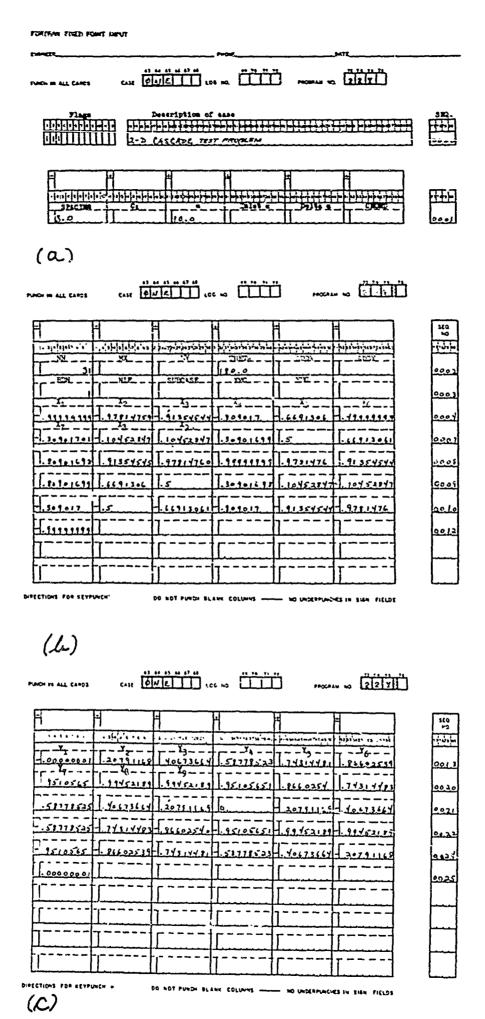
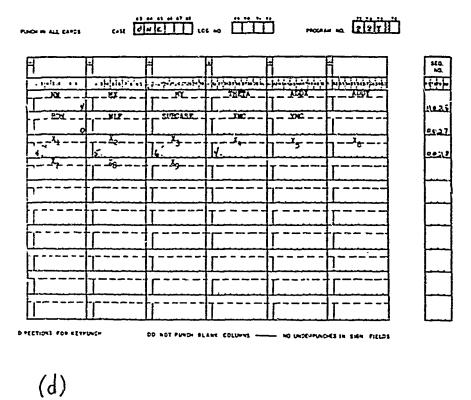



Figure 13.- Example problem control and data input sheets. (a) Header card and case control data.

(b) Control data and x coordinates for the cascade body. (c) y coordinates for cascade body.

POOD IN ALL CARDS

CASE

(l)

Figure 13. - Continued

- (d) Control data and x coordinates for off body points.
- (e) y coordinates for off-body points.

	6 39 40				D ALPHA		-12.00000286	-11.99999607	-12.00000370	-11.9999344	-12.00000370	-11.99999857	-12.00000036	347.9999619	06966666*11-	-12.00000036	-12.00000715	-11.9999011	-12.00000036	-12.00000715	-11.99999523	-12.00000548	-11.99999344	-12.00000203	-11.9999857	-12.00000560	-11.99949332	-12.00000143	-12.00000310	-11.99999726	***************************************	9*000000***	0+4+4+4	-12.00000072	-11.0999440	-12.00003099
AIKCRAF! COMPANY MEACH DIVISION		ADDY0.			SUMOS	0.20405642	-12.					-11-																	4.80830890	5.01736581	5.22642273	5.43547964	5.64453655	5.65359341	6.06269032	6.27170716
		•••	•	(4ED)	UELTA S	0.20905692	0.20905693	0 300000	0.0000000	0.20705692	0.20905690	0.20905493	0.20905694	0.20905691	0.2090569	0.20905691	0.20905691	0.20905492	0 30008403	0.20905691	10730000	7000000	3.0000000	0.20905691	0.20905694	0.20905691	0.20905693	0.20905690	0.20905694	0.20105692	6,20405692	0.26905692	0.20905691	0.20905£89	0.20905694	0.20905691
DOTOLAS LONG	ST PROBLEM	ADDA		MATES (TRANSFURMED)	>	0.00000000		-0.40673660		-0.74314477							-0.74314483				-0.0000000-	0.20741166														0.10395586
	2-0 CASCADE TEST PROBLEM	NY 4 31 NLF = -0 THETA = 190.00000000		ON-BOUY COORDINATES BODY NO. 1	*		2 0.97814758	3 6.41354544	4 0.80901700	5 U.66913060 5 U.66913060	0.50000001		8 0.10452849	9 -6.10452843	10 -0.30901695	11 -0.44934997	12 -0.66913058	13 -0.80901694	14 -0.91354542	15 -0.47614758	95666667-0- 91	10.97814759	18 -0.71354544	-6.86128122 19 -0.80901700	-0.13907380 20 -0.66413060	-6.58456530	-0.40450850	-0.20677275	-0.00000000 24 0.10452843							0.98907173 0.98907173 11 0.779989
*	44 44		NO. ONE	06							<u></u>					-								PAGE 3 1	~	~	~	~					-	~	5	
PARY	PAGE		CASE																			HPANY		u.												
DINUCLAS AIRCTAFF COMPANY Lema Reach Division	PAUGRAH 227 2-0 CASCADE	***** CASE COYT'UE DAIA ****	2-D CASCADL TEST PFOBLEM	8 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	FLAG 2	FLAG S • 0			FLAG 11 = 0	֓֞֞֝֟֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֟			C+030 • 1.0000000									DOUGLAS AIRCRAFT CUMPANY		2-D CASCADE TEST PRUBLEM	4 NLF0 NX -	THETA = -0. ADDX = -0. AMC = -0.	OFF-HUDY COURDINATES (TRANSFORMED)	X-0FF Y-0FF	00000000*	3 6.0000000 -0.	••00000000					

Figure 14. - Program output sheets for example problem. (a) Input or basic data.

This Document Contains Missing Page/s That Are Unavailable In The Original Document

Blank-pgs that have Been Removes

BEST AVAILABLE COPY

DOUGLAS AIRCRAFT COMPANY LONG BEACH DIVISION

2-5 CASCADE TEST PROBLEM

CASE ONE STREAMFLOW SOLUTION UNTRANSFORMED COORDINATES

1		x	Y	V	СР	SIGHA
2 -0.98907378	1	-0.49999999	-0.00000001			
2 -0.97814759	_			-0.27628037	0.92366915	-3.13563100
3 -0.91354544	2					
0.88128122	3			-0.82911973	0.31256047	-3.05742222
-0.80901700	,			-1.38354529	-0-91419258	-2.89444841
5 -0.66913059	4			2,0000.00	01/141/130	-2.0700001
-0.58456529	_			-1.94094200	-2.76725584	-2.63964686
6 -0.4999999	5			-2 (0//0200	C 22240424	
-0.40450849	6			-2.49449280	-5.22249430	-2.25525227
7 -0.30901700				-3.00859588	-8.05164909	-1.69504222
8 -0.10452846	7	-				
0. 0.99452189 -3.54606095 -11.57454824 -0.0000057 9 0.10452846 0.99452189 -3.39735693 -10.54203403 0.92603564 10 0.30901699 0.95105650 -3.39735693 -10.54203403 0.92603564 11 0.5000000 0.8054095 -3.00859627 -8.05165148 1.69504154 12 0.66913061 0.74314483 -2.49449351 -5.22249788 2.25525099 13 0.80701677 0.86546503 -1.94094250 -2.76725775 2.63964698 13 0.80701679 0.58778524 0.49726094 -1.38354616 -0.91419996 2.89666799 14 0.91354544 0.40673663 0.0741760 0.20791169 0.98907379 0.10395584 -0.27628082 0.92366934 3.13563150 15 0.97814760 0.20791169 0.94864651 0.30732416 0.27628004 0.92366934 3.13563158 17 0.97814760 0.49726094 0.82911979 0.31256037 3.05742210 18 0.94384651 0.3	2			-3.39735663	-10.54203200	-0.92603669
9 0.10452846 0.99452189 0.20677272 0.97278919 -3.39735693 -10.54203403 0.92603564 0.30901699 0.95105650 0.40450849 0.90854095 -3.00859627 -8.05165148 1.69504154 1.05000000 0.86602540 0.58456530 0.80458511 -2.49449351 -5.22249788 2.25525099 0.58456530 0.80458511 0.74314483 0.73907379 0.56546503 -1.94094250 -2.76725775 2.63964698 1.05081697 0.58778524 0.86128121 0.49726094 -1.38354616 -0.91419996 2.89666799 1.05081697 0.97814760 0.20791169 0.98907379 0.10395584 0.27628082 0.92366891 3.13563150 0.98907379 0.10395584 0.27628082 0.92366891 3.13563158 0.978184760 0.20791169 0.98907379 0.10395584 0.27628004 0.92366934 3.13563138 0.978584651 0.30732416 0.82911979 0.31256037 3.05742210 0.8012812 0.49726094 1.38354519 0.91419728 2.89666864 0.90618812 0.49726094 1.38354519 0.91419728 2.89666864 0.80291095 0.58768524 0.40673663 0.8612812 0.49726094 1.38354519 0.91419728 2.89666864 0.5876363 0.8612812 0.49726094 1.38354519 -0.91419728 2.89666864 0.58656530 0.80458511 2.49449275 -5.22249502 2.25525236 0.40450849 0.99854095 3.00859606 -8.05165017 1.69504198 0.90452189 0.02677727 0.991505650 0.20677272 0.97278919 3.39735678 -10.54203308 0.92603677 0.99452189 0.9095452189 0.9095452189 0.9095452189 0.9095452189 0.026677273 0.997278919 3.39735678 -10.54203439 0.92603677 0.7666913061 0.74314480 0.0973563 0.80458501 0.90854060 0.9095501 0.90955010 0.9095452189 0.90955010 0.9095452189 0.90955010 0.9095452189 0.90955010 0.9095501	•			-3.54606095	-11.57454824	-0 00000057
10	9			3.34000073	-11.71777024	-0.00000037
0.40450849 0.90854095 -3.00859627 -8.05165148 1.69504154 11 0.5000000 0.86602540 0.80456531 -2.49449351 -5.22249788 2.25525099 12 0.66913061 0.7314483 -1.94094250 -2.76725775 2.63964698 13 0.60901697 0.58778524 -0.40673663 -1.94094250 -2.76725775 2.63964698 14 0.91354544 0.40673663 -0.82912060 0.31255904 3.05742201 15 0.97814760 0.20791169 0.207628082 0.92366891 3.13563150 16 0.998907379 0.10395584 -0.27628004 0.92366934 3.13563138 17 0.97814760 -0.20791169 0.82911979 0.31256037 3.05742210 18 0.91354641 -0.40673663 0.82911979 0.31256037 3.05742210 19 0.80901699 -0.58778524 0.82911979 0.31256037 3.05742210 20 0.66913059 -0.74314483 2.49449295 -5.22249502 2.25552526 21			0.97278919	-3.39735693	-10.54203403	0.92603564
11	10					
0.58456530 0.80458511 -2.49449351 -5.22249788 2.25525099 12 0.66913061 0.74314483 -1.94094250 -2.76725775 2.63964698 13 0.80901697 0.58778524 -1.38354616 -0.91419996 2.89666799 14 0.91354544 0.40673663 -0.82912060 0.31255904 3.05742201 15 0.97814760 0.20791169 0.98907379 0.10395584 -0.27628082 0.92366891 3.13563138 16 0.9999979 0. 0.07814760 -0.20791169 0.92366934 3.13563138 17 0.97814760 -0.20791169 0.82911979 0.31256037 3.05742210 18 0.91354661 -0.30732416 0.82911979 0.31256037 3.05742210 19 0.80901697 -0.58778524 0.82911979 0.31256037 3.05742210 19 0.80901699 -0.58778524 0.38354519 -0.91419728 2.89666864 19 0.80901699 -0.58778524 0.38354519 -0.91419728 2.89666864	11			-3.00859627	-8.05165148	1.69504154
12				-2.49449351	-5.22249788	2,25525099
13 0.80901697 0.58778524 0.49726094 -1.38354616 -0.91419996 2.89666799 14 0.91354544 0.40673663 0.94584652 0.30732416 -0.82912060 0.31255904 3.05742201 15 0.97814760 0.20791169 0.98907379 0.10395584 -0.27628082 0.92366891 3.13563150 16 0.9999999 0. 0.98907379 -0.10395584 0.27628004 0.92366894 3.13563138 17 0.97814760 -0.20791169 0.27628004 0.92366934 3.13563138 18 0.94584651 -0.30732416 0.82911979 0.31256037 3.05742210 18 0.94584651 -0.40673663 0.82911979 0.31256037 3.05742210 19 0.80901699 -0.58778524 0.83354519 -0.91419728 2.89666864 19 0.80901699 -0.74314483 0.58456530 -0.80458511 2.49449295 -5.22249502 2.25552536 21 0.50000000 -0.866602549 0.90854095 3.00859606 -8.05165017	12				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2152553033
0.86128121 0.49726094 -1.38354616 -0.91419996 2.89666799 14 0.91354544 0.40673663 0.94584652 0.30732416 -0.82912067 0.31255904 3.05742201 15 0.97814760 0.20791169 0.98907379 0.10395584 -0.27628082 0.92366891 3.13563150 16 0.9999999 0. 0.98907379 -0.10395584 0.27628004 0.92366934 3.13563138 17 0.97814760 -0.20791169 0.82911979 0.31256037 3.05742210 18 0.94584651 -0.30732416 0.82911979 0.31256037 3.05742210 18 0.91354544 -0.40673663 0.82911979 0.31256037 3.05742210 19 0.80901699 -0.58778524 1.38354519 -0.91419728 2.89666864 19 0.80901699 -0.5878524 1.94094194 -2.76725560 2.63964716 20 0.66913059 -0.74314483 2.49449295 -5.22249502 2.25522536 21 0.50000000 -0.86602540 3.00				-1.94094250	-2.76725775	2.63964698
14	13			-1 39354414	-0.01410004	2 90444700
0.94584652 0.30732416 -0.82912060 0.31255904 3.05742201 15 0.97814760 0.20791169 0.98907379 0.10395584 -0.27628082 0.92366891 3.13563150 16 0.49999999 0. 0.98907379 -0.10395584 0.27628004 0.92366934 3.13563138 17 0.97814760 -0.20791169 0.82911979 0.31256037 3.05742210 18 0.94584651 -0.30732416 0.82911979 0.31256037 3.05742210 18 0.94584651 -0.40673663 0.86128121 -0.40673663 0.82911979 0.31256037 3.05742210 19 0.80901699 -0.58778524 0.73907379 -0.66546503 1.94094194 -2.76725560 2.63964716 20 0.66913059 -0.74314483 2.49449295 -5.22249502 2.25525236 21 0.50000000 -0.86602540 3.00859606 -8.05165017 1.69504198 22 0.30901697 -0.995105650 0.207278919 3.54606113 -11.57454944 0.00000054	14			-1.30334010	-0.71417770	2.04000144
0.98907379 0.10395584 -0.27628082 0.92366891 3.13563150 16 0.999997379 0.10395584 0.27628004 0.92366934 3.13563138 17 0.97814760 -0.20791169 0.82911979 0.31256037 3.05742210 18 0.91354544 -0.40673663 0.86128121 -0.49726094 1.38354519 -0.91419728 2.89666864 19 0.80901699 -0.58778524 0.73907379 -0.66546503 1.94094194 -2.76725560 2.63964716 20 0.66913059 -0.74314483 0.58456530 -0.80458511 2.49449295 -5.22249502 2.25525236 21 0.50000000 -0.86602540 0.40450849 -0.90854095 3.00859606 -8.05165017 1.69504198 22 0.30901697 -0.95105650 0.20677272 -0.97278919 3.39735678 -10.54203308 0.92603677 23 0.10452846 -0.99452189 3.54606113 -11.57454944 0.00000054 24 -0.10452846 -0.99452189 3.39735679 -10.54203439				-0.82912060	0.31255904	3.05742201
16 0.49999999 0. 0.98907379 -0.10395584 0.27628004 0.92366934 3.13563138 17 0.97814760 -0.20791169 0.94584651 -0.30732416 0.82911979 0.31256037 3.05742210 18 0.91354544 -0.40673663 0.86128121 -0.49726094 1.38354519 -0.91419728 2.89666864 19 0.80901699 -0.58778524 0.73907379 -0.66546503 1.94094194 -2.76725560 2.63964716 20 0.66913059 -0.74314483 0.58456530 -0.80458511 2.49449295 -5.22249502 2.25525236 21 0.50000000 -0.86602540 0.40450849 -0.90854095 3.00859606 -8.05165017 1.69504198 22 0.3091697 -0.97178719 3.39735678 -10.54203308 0.92603677 23 0.10452846 -0.99452189 3.54606113 -11.57454944 0.00000054 24 -0.10452846 -0.99452189 3.39735678 -10.54203439 -0.92603570 25 -0.30901700 -0.9510565	15					
0.98907379 -0.10395584 0.27628004 0.92366934 3.13563138 17 0.97814760 -0.20791169 0.82911979 0.31256037 3.05742210 18 0.94584651 -0.40673663 0.82911979 0.31256037 3.05742210 18 0.94584651 -0.4073663 1.38354519 -0.91419728 2.89666864 19 0.80901699 -0.58778524 1.94094194 -2.76725560 2.63964716 20 0.66913059 -0.74314483 0.58456530 -0.80458511 2.49449295 -5.22249502 2.25525236 21 0.50000000 -0.86602540 3.00859606 -8.05165017 1.69504198 22 0.3091697 -0.991505650 3.39735678 -10.54203308 0.92603677 23 0.10452846 -0.99452189 3.54606113 -11.57454944 0.00000054 24 -0.10452846 -0.99452189 3.39735699 -10.54203439 -0.92603590 25 -0.3091700 -0.95105650 3.00859636 -8.05165195 -1.69504163	16			-0.27628082	0.92366891	3.13563150
17	••			0.27628004	0.92366934	3.13563138
18	17					
0.86128121 -0.49726094 1.38354519 -0.91419728 2.89666864 19 0.80901699 -0.58778524 1.94094194 -2.76725560 2.63964716 20 0.66913059 -0.74314483 2.49449295 -5.22249502 2.25525236 21 0.50000000 -0.86602540 3.00859606 -8.05165017 1.69504198 22 0.30901697 -0.95105650 3.39735678 -10.54203308 0.92603677 23 0.10452846 -0.99452189 3.54606113 -11.57454944 0.00000054 24 -0.10452846 -0.99452189 3.39735699 -10.54203439 -0.92603590 25 -0.30901700 -0.97278919 3.39735699 -10.54203439 -0.92603590 26 -0.3091700 -0.97850550 3.00859636 -8.05165195 -1.69504163 26 -0.50000000 -0.86602539 -0.80458509 2.49449340 -5.22249728 -2.25525141 27 -0.66913061 -0.74314480 -0.74314480 -0.74397380 -0.46673663 -0.91419975 <td< td=""><td>10</td><td></td><td></td><td>0.82911979</td><td>0.31256037</td><td>3.05742210</td></td<>	10			0.82911979	0.31256037	3.05742210
19	10			1.38354510	-0 01610729	2 00444044
20	19			1.30224314	-0.91419728	2.87000804
0.58456530 -0.80458511 2.49449295 -5.22249502 2.25525236 21 0.50000000 -0.86602540 3.00859606 -8.05165017 1.69504198 22 0.30901697 -0.95105650 3.39735678 -10.54203308 0.92603677 23 0.10452846 -0.99452189 3.54606113 -11.57454944 0.00000054 24 -0.10452846 -0.99452189 3.54606113 -11.57454944 0.00000054 25 -0.30901700 -0.97278919 3.39735699 -10.54203439 -0.92603590 25 -0.30901700 -0.95105650 -0.940554094 3.00859636 -8.05165195 -1.69504163 26 -0.50009000 -0.86602539 -0.86456530 -0.80458509 2.49449340 -5.22249728 -2.25525141 27 -0.66913061 -0.74314480 1.94094259 -2.76725811 -2.63964647 28 -0.80901700 -0.58778523 -0.49726093 1.38354608 -0.91419975 -2.89666826 29 -0.91354544 -0.40673663 -0.949726093			-0.66546503	1.94094194	-2.76725560	2.63964716
21	20		-	2 /0//0205		
0.40450849 -0.90854095 3.00859606 -8.05165017 1.69504198 22 0.30901697 -0.95105650 3.39735678 -10.54203308 0.92603677 23 0.10452846 -0.99452189 3.54606113 -11.57454944 0.00000054 24 -0.10452846 -0.99452189 3.39735699 -10.54203439 -0.92603590 25 -0.30901700 -0.95105650 3.00859636 -8.05165195 -1.69504163 26 -0.50000000 -0.86602539 3.00859636 -8.05165195 -1.69504163 27 -0.66913061 -0.74314480 -0.74314480 -5.22249728 -2.25525141 28 -0.80901700 -0.58778523 0.86128122 -0.49726093 1.38354608 -0.91419975 -2.89666826 29 -0.91354544 -0.40673663 -0.97814760 -0.20791168 -0.97814760 -0.20791168 -0.92366940 -3.13563240	21			2.49449295	-5.22249502	2.25525236
22				3.00859606	-8.05165017	1.69504198
23	22					
-0.	23			3.39735678	-10.54203308	0.92603677
24				3,54606113	-11.57454944	0 00000054
25	24			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*********	0.00000074
-0.40450849 -0.90854094 3.00859636 -8.05165195 -1.69504163 26 -0.5000000 -0.86602539 -0.58456530 -0.80458509 2.49449340 -5.22249728 -2.25525141 27 -0.66913061 -0.74314480 -0.43907380 -0.66546501 1.94094259 -2.76725811 -2.63964647 28 -0.80901700 -0.58778523 -0.80128122 -0.49726093 1.38354608 -0.91419975 -2.89666826 29 -0.91354544 -0.40673663 -0.94584651 -0.30732416 0.82912064 0.31255897 -3.05742183 30 -0.97814760 -0.20791168 -0.98907375 -0.10395583 0.27627993 0.92366940 -3.13563240	26			3.39735699	-10.54203439	-0.42603590
26 -0.50000000 -0.86602539 -0.58456530 -0.80458509 2.49449340 -5.22249728 -2.25525141 27 -0.66913061 -0.74314480 -0.73907380 -0.66546501 1.94094259 -2.76725811 -2.63964647 28 -0.80901700 -0.58778523 -0.86128122 -0.49726093 1.38354608 -0.91419975 -2.89666826 29 -0.91354544 -0.40673663 -0.94584651 -0.30732416 0.82912064 0.31255897 -3.05742183 30 -0.97814760 -0.20791168 -0.98907375 -0.10395583 0.27627993 0.92366940 -3.13563240	25			3 00050/3/	0.05146435	
-0.58456530 -0.80458509 2.49449340 -5.22249728 -2.25525141 27 -0.66913061 -0.74314480 -0.73907380 -0.66546501 1.94094259 -2.76725811 -2.63964647 28 -0.80901700 -0.58778523 -0.86128122 -0.49726093 1.38354608 -0.91419975 -2.89666826 29 -0.91354544 -0.40673663 -0.94584651 -0.30732416 0.82912064 0.31255897 -3.05742183 30 -0.97814760 -0.20791168 -0.98907375 -0.10395583 0.27627993 0.92366940 -3.13563240	26			1.00859636	-8.05165145	-1.69504163
27				2.49449340	-5.22249728	-2.25525141
28	27					3,2,,,,,,,
0.86128122 -0.49726093 1.38354608 -0.91419975 -2.89666826 -0.91354544 -0.40673663 -0.94584651 -0.30732416 0.82912064 0.31255897 -3.05742183 -0.97814760 -0.20791168 -0.98907375 -0.10395583 0.27627993 0.92366940 -3.13563240	28			1.94094259	-2.76725811	-2.63964647
29 -0.91354544 -0.40673663 -0.94584651 -0.30732416 0.82912064 0.31255897 -3.05742183 30 -0.97814760 -0.20791168 -0.98907375 -0.10395583 0.27627993 0.92366940 -3.13563240				1.38354608	-0.91419975	-7.89666924
-0.94584651 -0.30732416 0.82912064 0.31255897 -3.05742183 30 -0.97814760 -0.20791168 -0.98907375 -0.10395583 0.27627993 0.92366940 -3.13563240	29	-0.91354544			00,242,,13	2.0700020
-0.98907375 -0.10395583 0.27627993 0.92366940 -3.13563240	20		-0.30732416	0.82912064	0.31255897	-3.05742183
	30	-U.Y/814/60 -U.Y8907375		0 27627003	0.02244040	
	31			0021021777	0.72300740	-3.13303240

Figure 14. - Continued

DOUGLAS AIRCRAFT COMPANY LONG BEACH DIVISION

2-D CASCADE TEST PROBLEM

CASE ONE 90-DEGREE FLOW SOLUTION UNTRANSFORMED COORDINATES

	x	Y	V	CP	SIGNA
1	-0.99999999 -0.98907378	-0.00000001 0.10395583	-1.53488527	-1.35587278	0.18791410
2	-0.97814759 -0.94584651	0.20791168 0.30732416	-1.44404635	-1.08526984	0.54974247
3	-0.91354544 -0.86128122	0.40573663 0.49726093	-1.27005473	-0.61303900	0.86980452
4	-0.80901700 -0.73907379	0.58778523 0.66546501	-1.02985202	-0.06059517	1.12206495
5	-0.66913059 -0.58456529	0.74314480 0.80458509	-0.75146042	0.43530724	1.28728521
6	-0.49999999 -0.40450849	0.86602539	-0.47140203	0.77778012	1.36378153
7	-0.30901700 -0.20677274	0.95105650 0.97278919 0.99452189	-0.22030935	0.95146379	1.37810113
8	-0.10452846 0.	0.99452189	-0.00000036	0.99994999	1.37502626
9	0.10452846 0.20677272 0.30901699	0.97278919	0.22030865	0.95146409	1.37810123
11	0.40450849	0.90854095	0.47140139	9.77778073	1.36378188
12	0.58456530 0.66913061	0.80458511 0.74314483	0.75145990	0.43530802	1.28728572
13	0.73907379 0.80901697	0.56546503 0.58778524	1.02985173	-0.06059459	1.12206513
14	0.86128121 0.91354544	0.49726094 0.40673663	1.27005431	-0.61303794	0.86980546
15	0.94584652 0.97814760	0.30732416 0.20791169	1.44404624	-1.08526954 -1.35587338	0.18791476
16	0.98907379	0.10395584	1.53488547	-1.35587353	-0.18791421
17	0.98907379	-0.10395584 -0.20791169	1.44404645	-1.08527014	-0.54974271
13	0.94584651	-0.30732416 -0.40673663 -0.49726094	1.27005479	-0.61303915	-0.86980455
19	0.86128121 0.80901699 0.73907379	-0.58778524 -0.66546503	1.02985221	-0.06059557	-1.12206489
20	0.66913059	-0.74314483 -0.80458511	0.75146053	0.43530708	-1.28728540
21	6.50000000 0.40450849	-0.86602540 -0.90854095	0.47140203	0.77778012	-1.36378179
22	0.30901697	-0.95105650 -0.97278919	0.22030934	0.95146379	-1.37810113
23	0.10457846 -0.	-0.79452189 -0.79452187	0.00000038	0.99999999	-1.37502635
24	-6.10452846 -0.20677273	-0.79452189 -0.97278919	-0.22030871	0.95146407	-1.37810141
25	-0.30901700 -0.40450849	-0.95105650 -0.90854094	-0.47140150	0.77778063	-1.36378205
26	-0.50000000 -0.58456530	-0.86602539 -0.80458509	-0.75146005	0.43530780	-1.28728585
2 <i>1</i> 28	-0.66913061 -0.73907380 -0.80901700	-0.74314480 -0.66546501 -0.58778523	-1.02985184	-0.06059480	-1.12206538
29	-0.86128122 -0.91354544	-0.49726093 -0.40673663	-1.27005456	-0.61303858	-0.86980533
30	-0.94584651 -0.97814760	-0.30732416 -0.20791168	-1.44404650	~1.08527029	-0.54974335
31	-0.98907375 -0.19999940	-0.10395583 0.00000001	-1.53488554	~1.35587361	-0.18791355

Figure 14. - Continued

DUUGLAS AIRCRAFT COMPANY LONG BEACH DIVISION

2-D CASCADE TEST PROBLEM

CASE UNE NON-UNIFORM UNSET FLOW SOLUTION NO. 1 UNTRANSFORMED COORDINATES

	X	Y	V	CP	SIGHA
1	-0.19999999 -0.98907378	-0.00000001 0.10395583	0.25337435	0.93580144	_0 02109701
2	-0.97814759	0.20791168	0.29331439	0.73,00144	-0.02108791
_	-0.94584651	0.30732416	0.23853764	0.94309979	-0.06055873
3	-0.91354544	0.40673663			
_	-0.86128122	0.49726093	0.21024562	0.95579678	-0.09188694
4	-0.80901700 -0.73707379	0.58778523 0.66546501	0.17160053	0.97055326	-0.10970391
5	-0.66913059	0.74314480	0.11100033	0.71033326	-0.10910391
-	-0.58456529	0.80458509	0.12796328	0.98362540	-0.10935894
6	-0.49999999	0.86602539			
-	-0.40450849	0.90854094	0.08709732	0.99241406	-0.08856266
7	-0.30901700 -0.20677274	0.95105650 0.97278919	0.05785099	0.99665326	-0.04960032
8	-0.10452846	0.99452189	0.03103077	0.,,00,320	0.04700032
	0.	0.99452189	0.04723441	0.99776891	-0.00000000
9	0.10452846	0.99452189			
10	0.20677272 0.30901699	0.97278919 0.95105650	0.05785099	0.99665326	0.04960030
10	0.40450849	0.90854095	0.08709731	0.99241406	0.08856265
11	0.50000000	0.86602540			000000000
	0.58456530	0.80458511	0.12796327	0.98362540	0.10935894
12	0.66913061	0.74314483	0.131/005/	0.07055335	0 10070200
13	0.73907379 0.80901697	0.66546503 0.58778524	0.17160054	0.97055325	0.10970389
13	0.86128121	0.49726094	0.21024559	0.95579679	0.09188698
14	0.91354544	0.40673663			
	0.94584652	0.30732416	0.23853765	0.94309978	0.06055875
15	0.97814760 0.98907379	0.20791169 0.10395584	0.25337436	0.93580143	0.02108794
16	0.99999999	0.10377784	0.23331430	0.73300143	0.02100774
	0.98907379	-0.10395584	0.25337438	0.93580142	-0.02108793
17	0.97814760	-0.20791169			
18	0.94584651	-0.30732416	0.23853766	0.94309978	-0.06055875
10	0.91354544 0.86128121	-0.40673663 -0.49726094	0.21024563	0.95579677	-0.09188694
19	0.80901649	-0.58778524	***************************************	***************************************	***************************************
	0.73907379	-0.66546503	0.17160054	0.97055325	-0.10970390
20	0.66913059	-0.74314483	0 1270/220	0.002/25/0	0 10035007
21	0.58456530 0.50000000	-0.80458511 -0.86602540	0.12796328	0.98362540	-0.10935894
~ .	0.40450849	-0.90854095	0.08709731	0.99241406	-0.08856265
22	0.30901697	-0.95105650			
23	0.20677272	-0.97278919	0.05785100	0.49665326	-0.04960031
23	0.10452846 -0.	-0.99452189 -0.99452189	0.04723441	0.99776891	-0.0000000
24	-0.10452846	-0.99452189	0.04125442	01////00/1	0.0000000
	-0.20677273	-0.97278919	0.05785100	0.99665326	0.04960032
25	-0.30901700	-0.95105650			
26	-0.40450849 -0.50000000	-0.90854094 -0.86602539	0.08709732	0.99241405	0.08856265
20	-0.58456530	-0.80458509	0.12796328	0.98362540	0.10935895
27	-0.66913061	-0.74314480			
	-6.73907380	-0.66546501	0.17160055	0.97055325	0.10970390
28	-0.80901700 -0.86128122	-0.58778523	0.21024563	A 95570477	0 00100404
29	-0.91354544	-0.49726093 -0.40673663	0.21024303	0.95579677	0.09188696
	-0.94584651	-0.30732416	0.23853769	0.94309977	0.06055877
30	-0.97814760	-0.20791168			
21	-0.98907375	-0.10395583	0.25337437	0.93580142	0.02108780
31	-0.99999990	0.0000001			

Figure 14. - Continued

(d) Circulatory flow solution

2-D CASCADE TEST PROBLEM

SPACING = 3.00000000 ALPHA = 9.9999998 DELTA ALPHA = 19.60917735

INLET ALPHA = 19.51188397 V INLET = 1.04480879 XMC = 0.

EXIT ALPHA = -0.09729340 V EXIT = 0.98480917 YMC = 0.

COMBINED VELOCITIES
BODY NU. 1 UNTRANSFORMED COURDINATES

X Y VC CP DELTA S

1 -0.99999999 -0.000000001
-0.98907378 0.10395583 -0.27208283 0.92597093 0.20905692

	x	Y -	VC	EP	DELTA S
_					
1	-0.93999999 -0.98907378	-0.00000001 0.10395583	-0.27208283	0.92597093	0.20905692
2	-0.97814759	0.20791168	0.21200203	0.72777073	0120707070
-	-0.94584651	0.30732416	-0.81635635	0.33356231	0.20905693
3	-0.91354544	0.40673663			
,	-0.86128122	0.49726093	-1.36190663	-0.85478967	0.20905690
4	-0.80901700 -0.73907379	0.58778523 0.66546501	-1.90977612	-2.64724481	0.20905694
5	-0.66913059	0.74314480	•000000000		
	-0.58456529	0.80458509	-2.45247802	-5.01464844	0.20905693
6	-0.49999999	0.86602539	2 05212407	-7 72005093	0.20905690
7	-0.40450849 -0.30901700	0.90854094 0.95105650	-2.95312697	-7.72095883	0.20903690
•	-0.20677274	0.97278919	-3.32314461	-10.04329002	0.20905693
8	-0.10452846	0.79452189			
_	0.	0.99452189	-3.44250140	-10.85081577	0.20905694
9	0.10452846 0.20677272	0.99452189 0.97278919	-3.24663243	-9.54062212	0.20905691
10	0.30901699	0.95105650	3.24003243	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0024707072
	0.40450849	0.90854095	-2.78941125	-6.78081506	0.20905693
11	0.50000000	0.86602540	2 101/0020	2 00244053	0 20005402
12	0.58456530 0.66913061	0.80458511 0.74314483	-2.19149938	-3.80266953	0.20905692
1.0	0.73907379	0.66546503	-1.55211282	-1.40905419	0.20905691
13	0.80901697	0.58778524			
• •	0.86128121	0.49726094	-0.92082220	0.15208647	0.20905692
14	0.91354544 0.94584652	0.40673663 0.30732416	-0.31484519	0.90087250	0.20905692
15	0.97814760	0.20791169			
	0.98907379	0.10395584	0.26097684	0.93189109	0.20905692
16	0.99999999 0.98907379	0. -0.10395584	0.80514307	0.35174464	0.20905692
17	0.97814760	-0.20791169	0.00714301	0.55111101	0.20,0,0,0
	0.94584651	-0.30732416	1.31820282	-0.73765868	0.20905692
18	C.91354544	-0.40673663		2552/002	0 20005401
19	0.86128121 0.80901699	-0.49726094 -0.58778524	1.80423087	-4.25524902	0.20905691
1,	0.73907379	-0.56546503	2.27079713	-4.156f1959	0.20905694
20	0.66913059	-0.74314483			
23	0.58456530	-0.80458511	2.72169322	-6.40761393	0.20905691
21	0.50000000 0.40450849	-0.86602540 -0.90854095	3.13636646	-8.83679450	0.20905694
22	0.30901697	-0.95105650	50170500		00000000
	0.20677272	-0.97278919	3.44485435	-10.86702144	0.20905690
23	0.10452846 -0.	-0.99452189 -0.99452189	3.54187548	-11.54488182	0.20905694
24	-0.10452846	-0.99452189	3.34101340	-11.74400102	0.20707074
-	-0.20677273	-0.97278319	3.36834201	-10.34572780	0.20905692
25	-6.30901700	-0.95105650		7	
26	-0.40450849 -0.50000000	-0.90854094 -0.86602539	2.97265065	-7.83565180	0.20905691
20	-0.58456530	-0.80458509	2.46071422	-5.05511445	0.20905693
27	-0.66713061	-0.74314480			
20	-0.73907380	-0.66546501	1.91313393	-2.66008145	0.20905692
28	-0.80901700 -0.86128122	-0.58176523 -0.49726093	1.36314641	-0.85816813	0.20905690
29	-0.41354544	-0.40673663			
	-0.94584651	-0.30732416	0.81669162	0.33301480	0.20905694
30	-0.97814760 -0.98907375	-0.20791168 -0.10395583	0.27208282	0.92597093	0.20905691
31	-0.99999990	0.00000001	V1212V0202	01,27,1073	4120107071

CY = 2.09703341 CX = -0.35218436 CM = -0.00000016

CL = 2.10384563

Figure 14. - Continued (e) Combined solutions for cascade body

DOUGLAS AIRCRAFT COMPANY LONG BEACH DIVISION

2-D CASCADE FEST PROBLEM

ALPHA = 9.9999988 SPACING = 3.00000000

OFF-BUDY POINT VELOCITIES

	X	Y	VXL	VYL
1	4.00000000	-0.	0.98323388	-0.00167368
2	5.00000000	-0.	0.98461396	-0.00167261
3	6.00000000	-0.	0.98478390	-0.00167250
4	4.00000000	-0.	0.98323388	-0.00167368

Figure 14. - Continued (f) Combined solutions for off-body points

ADDY(S), FLGO2(1)

Figure 15. - FORTRAN listing of the Douglas cascade program.

Figure 15. - Continued

3,2,2 3,2,2,2 3,2,2,2,2,2,2,2,2,2,2,2,2,			22222222222222222222222222222222222222
0 CGSA(J) - 10.5 200 1 - 1. NB 11 • L 14 • 1 CSINHI 3.14159 000 K - HI. NI 12 • 1 5 ° CT. O.)	(SP .60. C.) GO TO 706 L FORM2 (J. K. J2. L. O., SINA, CDSA, M2 L NP(G. ve. 0) GO TO 550 COUJGH2) - II A IMAG(T2) A A IMAG(T2) - A IMAG(W2) - A IM	720 12	5) (1) (411 0 124
2276 2276 2276 2276 2276 2278 2278 2278	ALPHA, FALPHA FLGOT, FLGOS YPC, ADDY, HEDR	991, CD5A15DD1, ND1.031, 22YC 4991, SUMDS1103, NLF1103 23YC 22YC 22YC 22YC 22YC 22YC 22YC 22YC	25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2
N = NN 550 2(1) = (1, NY 550 2(1) = (2PLX! X(1), Y(1)) 600 MITE (9) (2(1), 1 = 1, M) IF (BDN - EQ. O) GO 10 2000 MATTE (4) (SINAL(1), 1 = 1, M) MATTE (9) (GOSAL(1), 1 = 1, M) MATTE (9) (GOSAL(1), 1 = 1, M) MATTE (9) (GOSAL(1), 1 = 1, M)	6 - NOINB+1) NO. OF ELEMEN1 PHA PART2 NER, VI, NH, G10, FLG01, FL	1) FLCGS, FLCGS, FLGGS, FLGIS, FLGIS, DIFENSIGN SLOOP, FLGIS, FLGIS, BARLESS, BARLES	· -

Figure 15. - Continued

MISIO130 MISSO140 MISSO150 MISSO160 MISSO200 MISSO200 MISSO200 MISSO200	MISSION MISSIO	MIS10850 MIS10860 MIS10870
S. M. NERR, G. J.	(41JMAX)) 25,25,20	
BRDUTINE HENSION ULVALENCE RR I I I # NDD 90 I=11, JMAX = AC	If (485 (4(1-1) > 0.0 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	B(IK) = A(2) J = J + ND 99 K = K + ND
2246 2246 2246 2246 2246 2246 2246 2246	7	22YH 22YH
IF (ITEK .EQ. 100) GO TO 1400 IF I MTU .EG. 10) GO TO 1200 NIU = 10 1200 MTU = 11 GO TO 400 1400 MTU = 11 GO TO 400 1400 MTU = 11 IF I KFLGGLJJ .4E. 6) GO TO 1500	10 FORMAI (1140 3X 36H NO CONVERGENCE AFTER 100 ITERATIONS) 50 FORMAI (1140 3X 36H NO CONVERGENCE AFTER 100 ITERATIONS) 50 WATTE (6, 12) KFLAGL) 51 SORWITE (13. 15 KFLAGL) 52 FORMAI (1140 5X 15. 13. 36H ITERATIONS REQUIRED FOR CONVERGENCE) 50 WATTE (13. 151611.3); 1 = 1, MT) 50 RETURN 50 RET	RETURN END \$18FIC 22YT

Figure 15. - Continued

22YJ 22YJ 22YJ 22YJ 22YJ 22YJ

22YJ 22YJ 22YJ 22YJ

22Y3 22YJ

22YJ 22YJ 22YJ 22YJ

22YJ 22YJ 22YJ

227.3 227.3 227.3 227.3 227.3 227.3

Figure 15. - Continued

Figure 15. - Continued

Figure 15. - Continued

MERR = 1 10.0 = 40.0 10.0 = 1.0 10.0 =	MERR = 1 MD = MD = 1 MD = MD = 1 MD = MD = 1 MD = MD = 1 MD = 2 = 2,0 MD = 1 = (1-1)+0 MD = 1 =	MERRIA 100 MINERAL			
MG = MDD MG = M	MG = MDD MG = M	10			20101011
11	10	10. 50. 50. 50. 50. 50. 50. 50. 50. 50. 5	_		W1510160
######################################	######################################	### #### #############################		-1 06	M1510120
	EG 25 12 10 10 10 10 10 10 10 10 10 10 10 10 10				H1510200
15 15 15 15 15 15 15 15	15 1 15 15 15 15 15 15	15 1 + (1-1) = 10 1		1 = XXX71	HIS1021C
			_	25 J=2,N	MIS10220
ALBMAX = (AILMAX Most	ALBMAX A(13)) - ABS (ALMAX I) 25,25,20 ALBMAX - A(13) CFOTTUNE CFOTTUNE CFOTTUNE D	1		UN-(1-F) + 1 -	MIS10230
1JUNAX = A[1] 1JUNAX = A[1] 1S	10. 1	1JANA = A(13) 1JANA = A(13) 1JANA = A(13) 1GOTING 1J = (-1) =		ARS (A(1J)) - ABS (A(JM14))	H1510240
				¥ .	HIS10250
CCNTRUE CCNTRUE 1 = 1-1211-13 1 = 4121741JMAX 2 = 0 = 41240X 3 = 0 = 41240X 41.31 = 4112741JMAX 5 = 0 = 41240X 60	CCNTINUE CCNTINUE 1	If (ALHAX) 30,999,30 OD 55 J=1,4 AL(J) = (J-1)***** AL(J) = ALJPAX D 0 ALJPAX D 0 ALJPAX D 0 ALJPAX D 0 ALJPAX D 1 A 1 (J-1)**** D 1 A 1 (J-1)**** D 1 A 1 (J-1)**** D 1 A 1 (J-1)*** D 2 A 1 A 2 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3		-	MIS10260
IF (AILHAX) 30,999,30 AILU] = A(1)1/AIJHAX AILU] = A(1)1/AIJHAX BG 40 J=1.8 IJ = (J-1)-NG BG 40 J=1.8 IF (K-1) 50,70,50 KJ X X = IJHAX + (K-1) ARA =	11. (11.14x) 30,999,30 12. (11.14x) 30,999,30 13. 1 + (J-1)************************************	If (ILLIAN) 30,999,30 10 55 Jalay Alia) = Alia/Aliax 10 1 4 (2-1)**** Alia/Aliax 10 2 0 x = 1,0 x 0 11 1 1 4 (1-1)*** 10 1 0 x = 1,0 x 0 11 2 1 4 (1-1)*** 10 2 0 x = 1,0 x 0 11 3 1 4 (1-1)*** 12 3 0 x = 1,0 x 0 13 1 4 0 0 14 (1,1) 55,59,55 4 (1,1) 55,59,55 4 (1,1) 55,59,55 4 (1,1) 55,59,55 4 (1,1) 55,59,55 4 (1,1) 55,59,55 4 (1,1) 55,69,55 8 (1,1) 1 4 0 0 4 (1,1) 6 (1,1) 6 (1,1) 6 (1,1) 11 1 1 4 0 0 12 1 1 4 0 0 13 1 1 4 0 0 14 (1,1) 6 (1,1) 6 (1,1) 15 1 1 4 0 0 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	411XU#	H1510270
10 1 1 4 (1-1)*0 20 - 0 - 4 19*0 20 - 10 - 1 19*0 20 - 10 - 10 - 10*0 20	10 1 1 4 (1-1) ***********************************	10 1 1 4 (1-1)***********************************		(ALJHAX) 30,999,3	MIS10290
A(1) = A(1)/A(1)/A(1)/A(1)/A(1)/A(1)/A(1)/A(1)/	ALIJI = ALIJI/ALJHAX 3 = 3 - 3 - 11 - 4 - 11 - 11 - 11 - 11 - 11	11. 1 = 1.1.1/11/11/11/11/11/11/11/11/11/11/11/1		35 Jele	H1510310
2	D = 0 = Alliana			1-0-1	02501518
1		1		- A - 1	#1510330
		1	-		04501514
				2011	0001011
MAN CONTRIBUTED OF THE CALL OF		MAN AND AND AND AND AND AND AND AND AND A			000000
					06501516
######################################	ARAI = -4KJMAX LAND	######################################	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	07501510
ARI = -4(KJMAX) 15	ARI = -4(KJMAX) 15	ARI = -4(KJMAX) ARI = -4(KJMAX) 15		00.00 + 3430 M = 349	0000000
				- 1000 C 1000 C 100 C 10	05701717
		17 = 17 17 = 17 18 = 11 + 10 19 = 13 + 10 19 = 13 + 10 19 = 13 + 10 19 = 13 + 10 10 = 69 J J J J J J J J J J J J J J J J J J			07701517
IF (A(1J)) 55,58,55 If (A(1J)) 55,58,55 IJ = NJ + NG II = N + NG II =		IF (A(1J)) 55,58,55 IF (A(1J)) 55,58,55 IJ = NJ + NG II	- '	· ·	00707077
F (A(1)) 55,59,55	F (A(1)) 55,59,55 F A(1) A(-		201017
4(K.) = 444741(J) + 4(K.) 4(K.) = 13 + 40 4(K.) = 13 + 40 4(K.) = 14 + 40 4(K.) = 444741(J) + 5(K.) 4(K.) = 444741(J) + 6(K.) 4(K.) = 444741(J) + 6(4(K.J.) = 444741(J) + 4(K.J.) 4(K.J.*X.) = 40 4(K.J.*X.) = 0.0 K.J. * K. 1.5 = 13 + 40 1.6 = 3 - 1.4 1.6 = 13 + 40 1.7 = 13 + 40 1.7 = 13 + 40 1.8 = 13 + 40 1.9 = 13 + 40 1.0 = 13 + 40 1.1 = K.* M. + 1 1.1 = K.* M. + 1 1.2 = 13 + 40 1.3 = 13 + 40 1.4 = 1 1.5 = 13 + 40 1.6 = 13 + 40 1.7 = 13 + 40 1.8 = 13 + 40 1.9 = 13 + 40 1.1 = 13 + 40 1.1 = 14 + 40 1.1 = 13 + 40 1.2 = 13 + 40 1.3 = 13 + 40 1.4 = 13 + 40 1.5 = 13 + 40 1.6 = 13 + 40 1.7 = 13 + 40 1.8 = 13 + 40 1.9 = 13 + 40 1.0	A(K.) = A4AT-4(1) + A(K.) K.J = K.J + V.C K.J = K.J + V.C K.J = K. K.J = K. E (B(1.)) = 65.69.65 B (K.J) = A4AT-6(1.) + 9(K.) E (B(1.)) = 65.69.65 B (K.J) = A4AT-6(1.) + 9(K.) E (B(1.)) = A4AT-6(1.) + 9(K.) E (A1.) = E (A1.) E (A1	-	(4/11) 55.58.5	00701517
K1 = K1 + VC 11 = 11 + ND K1 = K 10 = 6 - 11 + ND 11 = 11 12 = 13 + ND 13 = 13 + ND 13 = 13 + ND 14 = 14 + ND 15 = 14 + ND 16 = 10 = 11 + ND 17 = 10 + ND 18 = 11 + ND 18 = 11 + ND 19 = 11 + ND 10 = 11 + ND 11 = K = K(11) 12 = K(11) 13 = 11 + ND 14 = K(11) 15 = K(11) 16 = K = K(11) 17 = K(11) 18 = K(11) 19 = K(11) 10 = K(11) 11 = K = K(11) 11 = K = K(11) 12 = K(11) 13 = K(11) 14 = K(11) 15 = K(11) 16 = K(11) 17 = K(11) 18 = K(11) 19 = K(11) 19 = K(11) 10 = K(11) 11 = K = K(11) 11 = K = K(11) 12 = K(11) 13 = K(11) 14 = K(11) 15 = K(11) 16 = K(11) 17 = K(11) 18 = K(11) 19 = K(11) 19 = K(11) 10 = K(11) 11 = K = K(11) 11 = K = K(11) 12 = K(11) 13 = K(11) 14 = K(11) 15 = K(11) 16 = K(11) 17 = K(11) 18 = K(11) 19 = K(11) 10 = K(11) 11 = K(11) 11 = K(11) 12 = K(11) 13 = K(11) 14 = K(11) 15 = K(11) 16 = K(11) 17 = K(11) 18 = K(11) 19 = K(11) 19 = K(11) 19 = K(11) 19 = K(11) 19 = K(11) 19 = K(11) 10 = K(11) 10 = K(11) 10 = K(11) 11 = K(11) 12 = K(11) 13 = K(11) 14 = K(11) 15 = K(11) 16 = K(11) 17 = K(11) 18 = K(11) 18 = K(11) 18 = K(11) 19 = K(11) 19 = K(11) 19 = K(11) 10 = K(11) 10 = K(11) 11 = K(11) 12 = K(11) 13 = K(11) 14 = K(11) 15 = K(11) 16 = K(11) 17 = K(11) 18		K1 = K1 + V6 11 = 11 + N0 K1 = K 12 = 13 + N0 13 = K 14 = 14 15 = 14 + N0 COVILIUS COVIL		101101 101101 101101 101101 101101 101101	06401517
13 13 + ND 44(4) 45 45 45 45 45 45 45	13	13	_	1 K 1 K 10 K 10 K 10 K 10 K 10 K 10 K 1	000101
# # # # # # # # # # # # # # # # # # #	4(KJMAX) = 0.0 4(KJMAX) = 0.0 1J = 1 1S = (KIJJ) = 65(68,65) 1S = (KJ + M) 1	# # # # # # # # # # # # # # # # # # #		2 =	6101616 6101616
					MINIOS 20
			-	×	0550151K
				= = =	M1510550
IF (B(11)) 65,69,65 XJ = ARAT-B(1J) + 9(KJ) XJ = 1J + NO CONTINUC CONTINUC A(KJ) = FI		IF (B(11)) 65,69,65 BIKJ) = ARAFAR(1)) + 9(KJ) BIKJ) = ARAFAR(1)) + 9(KJ) BIJ = 13 + NO COVITIVE A(XJ = 134Kx = f+1 A(XJ = 134K	-	1=6 69	H1510560
Bitch = ARATeR(1J) + Bitch) 1.3 = 1.3 + Mu 1.3 = 1.3 + Mu 1.4 = 1.4 + Mu 1.5 = 1.4 + Mu 1.6 = 1.4 + Mu 1.7 = 1.4 + Mu 1.8 = 1.4 + Mu 1.9 = 1.4 + Mu 1.9 = 1.4 + Mu 1.1 = 1.4 + Mu 1.2 = 1.4 + Mu 1.3 = 1.4 + Mu 1.4 + Mu 1.4 + Mu 1.5 = Mu 1.5 = Mu 1.6 = Mu 1.7 = Mu 1.8 = Mu 1.9 =	Bitch = ARATeR(13) + B(KJ) KJ = KJ + MU	Bitch = ARATeR(13) + B(KJ) KJ = KJ + NU LJ = 11 + ND COVILIUS KJ = LJ + NA E		(8(13)) 65,69,65	M1510570
X3 = X4 = MU COVITING COVITING A(X,1) = X4 = X = X = X = X = X = X = X = X =	13 = 13 + 40 13 = 13 + 40 COVITIVE A(K.) = 14 A(K.) = FI B(I.) = FI B(I.) = B(I.) B(I.) = B(I.) B(I.) = B(I.) B(I.) = B(I.) B(I.) = A(2) B(I.) =	13 = 13 + 40 13 = 13 + 40 COVITUC COVITUC A(A1) = FI A(A1) = FI A(A1) = FI A(A1) = FI A(B) = A(B) B(B) = A(B) B(J) = ARAT-B(IJ) + B(KJ	MIS10580
11.5 = 1.4 + NO COVITIVUE A (K.) = 1.4 A (K.) = FI A (K.) = B (K.) A (K.) = A (K.) A (K.) =	15 = 13 + 40 COVITIVE KJ = 194X - [+1 A(KJ) = FI A(KJ) = A(KJ) = A(KJ) = FI A(KJ) = A(KJ) = A(KJ) = FI A(KJ) = A	15 = 13 + 40 COVITIVUE KJ = 1J4AA - [+1 A(KJ) = FI A(KJ) = A(IJ) B(IJ) = B(IJ) B(IJ) = B(IJ) B(IJ) = A(Z) IJ + 40 CONTINUE		÷	MIS10590
A(KJ) = [J44K - [+] A(KJ) = [J44K - [+] A(KJ) = [I K K K I A(I K K A(I	2041/404 - [+1] 4(KJ) = [1/404 - [+1] 4(KJ) = [1] 11 = K+00 - MJ + 1 12 = K(11) 13 = [1] 14 = [1] 15 = [1] 16 = [1] 17 = [1] 18 = [1] 19 = [1] 10 = [1] 10 = [1] 11 = [1] 12 = [1] 13 = [1] 14 = [1] 15 = [1] 16 = [1] 17 = [1] 18 = [1] 19 = [1] 1	A(KJ) = [144K - [+1] A(KJ) = [144K - [+1] A(KJ) = [1 14 14 14 14 14 14 14		2	MIS10600
A(X) = F(X) = F(A(X) = K(X) = K(A(X) = F(X) = F(707.1	01901318
	A A A A A A A A A A A A A A A A A A A	A L L L L L L L L L L L L L L L L L L L	_		07901518
				1 001	00201717
				-	MIS10710
FK = A(11) 1J = (K-1) 1J = (K-1) 1J = K-1) 1K = K 1K = K 1J = B(1J) 1J = B(1J) 1J = A(2) 1J = A(2) 1K = 1K + ND	FF = A(11) 11 (K-1) 93*100,95 11 (K-1) 93*100,95 12 (K-1) 93*100,95 13 (K-1) 93*100,95 14 (K-1) 15 (K-	FF = A(11) 11 (4-1) 93,100,45 11 (1-1) 12 (1-1) 13 (1-1) 14 (1-1) 15 (1-1) 16 (1-1) 17 (1-1) 18 (1-1) 18 (1-1) 19 (1-1)		1 * K•4D -	MIS10720
IF (x-1) 93,100,95 1.1		If (K-1) 93,100,95 II a	_	K = A(HIS10730
			Ξ.	F (X-1) 9	MIS10750
		IX = X = X = X = X = X = X = X = X = X =	v		HIS10800
00 49 181,4 01 10 18 01 13 15 15 15 15 15 15 15 15 15 15 15 15 15	A42) = A61J A42) = A61J B613) = B61X B61X) = A62 B7 = A72 B7	00 49 J=1,4 01 13 = 0(1x) 01(1x) = 0(1x) 01	_	*	MIS13810
A(2) = B(1) B(1X) = B(1X) B(1X) = A(2) LJ = LJ + VD IX = IX + NO	A(1) = A(1) A(1) A(1) A(1) A(1) A(1) A(1) A(1) A(2) A(2) A(2) A(3) A(A(2) = h(1) B(1) = b(1) B(1X) = b(1) B(1X	•	9	HIS10820
B(12) = B(1X) B(1X) = B(1X) LJ = LJ + NO IX = IX + NO	B(11) = B(1x) B(1x) = A(2) L) = L) + VD L) = ND	B(13) = B(1X) B(1X) = A(2) 1J = 1J + VD 1K = 1X + ND CONTINUE	•		01810830
1	17 = 17 + 10	1.0 = 1.0 =			07801511
OZ + XI + XI	T + 70	CONTINUE HIS + NO HIS CONTINUE HIS + NO HIS HIS + NO HIS HIS HIS + NO HIS	-, -		000001
	TOTAL STATE OF STATE	CONTINUE			00001511
2011				-	=

 999 RETURN	 2	
666		

Figure 15. - Continued

DISTRIBUTION LIST

REPORT NO. LB 31653

Chief of Naval Research Fluid Dynamics Branch, (Code 438) Department of the Navy Washington 25, D.C. (2 copies)

Chief, Bureau of Naval Weapons Dynamics Section (Code RAAD-222) Attention: Mr. D. Michel Washington 25, D.C.

Commander U.S. Naval Ordnance Laboratory White Oak, Maryland

Commander U.S. Naval Ordnance Test Station China Lake, California

Officer-in-charge, Pasadena Annex J.S. Naval Ordnance Test Station Oceanic Research (Code P-508) 3202 E. Foothill Blvd. Pasadena 8, California (2 copies)

National Bureau of Standards Washington 25, D.C. Att: Dr. G. B. Schubauer, Chief Fluid Mechanics Section

National Bureau of Standards Washington 25, D.C. Att: Dr. J. M. Franklin, Consultant

Director Langley Research Center Langley Field, Virginia Att: Mr. I. E. Garrick

Director
Langley Research Center
Langley Field, Virginia
Att: Mr. D. J. Marten

National Research Council of Canada Hydromechanics Laboratory Ottawa 2, Canada

Mr. R. P. Godwin, Acting Chief Office of Research & Development Maritime Administration 441 G. Street, N.W. Washington 25, D.C. Office of Technical Services OTS, Dept. of Commerce Washington 25, D.C.

Chief, Bureau of Ships Department of the Navy Washington 25, D.C. Att: Code 210L (3 copies)

Chief, Bureau of Ships Department of the Navy Washington 25, D.C. Att: Code 420 (2 copies)

Chief, Bureau of Ships Department of the Navy Washington 25, D.C. Att: Code 440 (3 copies)

Chief, Bureau of Ships Department of the Navy Washington 25, D.C. Att: Code 430 (3 copies)

Chief, Bureau of Ships Department of the Navy Washington 25, D.C. Att: Code 341B

Chief, Bureau of Ships Department of the Navy Washington 25, D.C. Att: 345

Chief, Bureau of Ships Department of the Navy Washington 25, D.C. Att: 422

Chief, Bureau of Ships Department of the Navy Washington 25, D.C. Att: 644 (2 copies)

Commanding Officer and Director David Taylor Model Basin Washington 7, D.C. (65 copies)

Commander
Defense Documentation Center
Cameron Station
Alexandria, Virginia (20 copies)

Commander

Air Research and Development Command Att: Mechanics Branch Air Force Office of Scientific Research 14th and Constitution Washington 25, .C.

Commander

Wright Air Development Division Aircraft Laboratory Att: Mr. W. Mykytow, Dynamics Branch Wright-Patterson Air Force Base, Ohio

Commanding Officer Office of Naval Research Branch Office 495 Summer Street Boston, Massachusetts O2110

Commanding Officer
Office of Naval Research Branch Office
207 West 24th Street
New York, New York 10011

Commanding Officer Office of Naval Research Branch Office 230 North Mighigan Avenue Chicago, Illinois 60601

Commanding Officer
Office of Naval Research Branch Office
1000 Geary Street
San Francisco, California 94109

Commanding Officer
Office of Naval Research Branch Office
1030 East Green Street
Pasadena, California 91101

Commanding Officer
Office of Naval Research
Box 39, Navy #100, Fleet Post Office
New York, New York (5 copies)

UNIVERSITIES

Guggenheim Aeronautical Laboratory California Institute of Technology Pasadena 4, California Att: Dr. Clark B. Millikan

California Institute of Technology Pasadena 4, California Att: Professor T. Y. Wu California Institute of Technology Pasadena, California Att: Dr. M. S. Plesset

California Institute of Technology Pasadena, California Att: Dr. A. J. Acosta

California State Polytechnic College Aeronautical Engineering San Iuis Obispo, California Att: Professor Lester W. Gustafson

University of California 209 Mechanical Engineering Building Berkeley 4, California Att: Professor Edmund V. Laitone

University of California
Dept. of Engineering, Institute of
Engineering Research
Berkeley 4, California
Att: Dr. J. V. Wehausen

Case Institute of Technology Cleveland, Ohio Att: Dr. G. Kuerti

Cornell University
Graduate School of Aeronautical
Engineering
Ithaca, New York
Att: Dr. W. R. Sears

Cornell Aeronautical Laboratory 4455 Genesee Street Buffalo, New York Att: Mr. W. Targoff

Cornell Aeronautical Laboratory 4455 Genesee Street Buffalo, New York Att: Mr. R. White

University of Florida
Department of Aeronautical Engineering
Gainesville, Florida
Att: Professor William H. Miller

University of Florida Department of Aeronautical Engineering Gainesville, Florida Att: Professor D. T. Williams Harvard University
Dept. of Applied Physics and
Engineering Science
Cambridge 38, Massachusetts
Att: Dr. H. W. Emmons

Harvard University
Dept. of Applied Physics and
Engineering Science
Cambridge 38, Massachusetts
Att: Professor Carrier

Harvard University
Dept. of Applied Physics and
Engineering Science
Cambridge 38, Massachusetts
Att: Professor Goldstein

University of Illinois
Dept. of Aeronautical Engineering
Urbana, Illinois
Att: Dr. Allen I. Ormsbee

Professor J. M. Robertson
University of Illinois
Dept. of Theoretical and Applied
Mechanics
212 Talbot Laboratory
Urbana, Illinois

John Hopkins University Department of Aeronautics Baltimore 18, Maryland Att: Dr. F. H. Clauser

Johns Hopkins University
Applied Physics Laboratory
P. O. Box 244-Rt. 1
Laurel, Maryland
Att: Technical Reports Office

Johns Hopkins University Applied Physics Laboratory 8621 Georgia Avenue Silver Springs, Maryland Att: Dr. F. N. Frenkiel

Massachusetts Institute of Technology Fluid Dynamics Research Laboratory Cambridge 39, Massachusetts Attn: Prof. H. Ashley Massachusetts Institute of Technology Fluid Dynamics Research Laboratory Cambridge 39, Massachusetts Attn: Prof. M. Landahl

Massachusetts Institute of Technology Fluid Dynamics Research Laboratory Cambridge 39, Massachusetts Attn: Prof. J. Dugundji

Massachusetts Institute of Technology Fluid Dynamics Research Laboratory Cambridge 39, Massachusetts Attn: Prof. A. Shapiro

University of Michigan
Dept. of Aeronautical Engineering
Ann Arbor, Michigan
Att: Professor Arnold Kuethe

University of Michigan College of Engineering Ann Arbor, Michigan Att: Dr. Arthur G. Hansen

University of Michigan College of Engineering Dept. of Engineering Mechanics Ann Arbor, Michigan Att: Professor C. S. Yih

University of Minnesota Dept. of Aeronautical Engineering Rosemount Aeronautical Laboratories Rosemount, Minnesota

Guggenheim School of Aeronautics New York University University Heights New York 53, New York Att: Librarian

North Carolina State College Head of Hechanical Engineering Dept. Raleigh, North Carolina Att: Dr. R. W. Truitt

Ohio State University
Research Foundation
Columbus 10, Ohio
Att: Library

Pennsylvania State University University Park, Pennsylvania Att: Professor George F. Wislicenus

Purdue University School of Aeronautical Engineering Lafayette, Indiana Att: Library

University of Southern California Engineering Center 935 West 37th Street Los Angeles 7, California Att: Dr. Raymond Chuan

Stanford University
Department of Methematics
Stanford, California
Att: Dr. B. Perry

Stanford University
Department of Mathematics
Stanford, California
Att: Dr. E. Y. Hsu

Stanford University
Department of Mathematics
Stanford, California
Att: Prof. I. Flugge-Lotz

Stevens Institute of Technology 5th and Hudson Street Hoboken, New Jersey Att: Dr. John P. Breslin

Stevens Institute of Technology Hoboken, New Jersey Att: Director, Davidson Laboratory

Stevens Institute of Technology Davidson Laboratory Hoboken, New Jersey Att: Mr. C. J. Henry

Stevens Institute of Technology Davidson Laboratory Hoboken, New Jersey Att: Mr. S. Tsakonas

University of Texas Defense Research Laboratory P. O. Box 8029 Austin, Texas Att: Professor M. J. Thompson University of Washington
Dept of Aeronautical Engineering
Seattle 5, Washington
Att: Professor R. E. Street

State University of Iowa Iowa Institute of Hydraulic Research Iowa City, Iowa Att: Prof. L. Landweber

State University of Iowa Iowa Institute of Hydraulic Research Iowa City, Iowa Att: Prof. Hunter Rouse

University of California Dept of Naval Architecture Berkeley, California Att: Prof. H. A. Schade, Head

St. Anthony F lls Hydraulic Laboratory University of Minnesota Minneapolic, Minn. Att: Prof. B. Silberman

St. Anthony Falls Hydraulic Laboratory University of Minnesota Minneapolis, Minn. Att: Mr. J. N. Wetzel

Ordnance Research Laboratory Pennsylvania State University University Park, Penn. Att: Dr. M. Sevik

Virginia Polytechnic Institute Aerospace Engineering Dept. Blacksburg, Virginia Att: Dr. H. A. Hassan

INDUSTRIAL AND RESEARCH COMPANIES

Midwest Research Institute 425 Volker Blvd. Kansas City 10, Missouri Att: Mr. Zeydel

Director, Dept. of Mechanical Sciences Southwest Research Institute 8500 Culebra Road San Antonio 6, Texas James Forrestal Research Center Dept. of Aeronautical Engineering Princeton, New Jersey Att: Professor C. D. Perkins, Chairman

Department of Mechanical Sciences Southwest Research Institute 8500 Culebra Road San Antonio 6, Texas Att: Dr. H. N. Abramson

Department of Mechanical Sciences Southwest Research Institute 8500 Culebra Road San Antonio 6, Texas Att: Mr. G. Kansleben

Department of Mechanical Sciences Southwest Research Institute 8500 Culebra Road San Antonio 6, Texas Att: Editor, Applied Mechanics Review

Boeing Airplane Co., Seattle Division P. O. Box 3107 Seattle 14, Washington Att: Mr. G. Schairer

Boeing Airplane Co., Seattle Division P. O. Box 3107 Seattle 14, Washington Att: Mr. M. J. Turner

Convair P. 0. Box 1950 San Diego 12, California Att: Mr. A. D. MacLellan, Systems Dynamic Group

Convair P. 0. Box 1950 San Diego 12, California Att: Mr. H. T. Brooke, Hydrodynamics Group

Electric Boat Division General Dynamics Corp. Groton, Conn. Att: Mr. Robert McCandliss

General Applied Sciences Laboratories, Inc.
Armour Research Foundation Westbury, Long Island, New York Att: Dr. F. Lane

Gibbs and Cox, Inc. 21 West Street New York, New York

Grumman Aircraft Engineering Corp. Bethpage, Long Island, New York Att: Mr. E. Baird

Grumman Aircraft Engineering Corp. Bethpage, Long Island, New York Att: Mr. E. Bower

Grumman Aircraft Engineering Corp. Bethpage, Long Island, New York Att: Mr. M. C. Tilgner

Grumman Aircraft Engineering Corp. Dynamic Developments Division Babylon, New York

President, Hydronautics, Inc. Pindell School Road Laurel, Howard County, Maryland (2 copies)

Lockheed Aircraft Corp. Missiles and Space Division Palo Alto, California Att: R. W. Kermeen

Lockheed Aircraft Corp. Missiles and Space Division Palo Alto, California Att: L. A. Rodert

Technical Research Group, Inc. Route 110 Melville, Long Island, New York Att: Dr. Jack Kotik (2 copies)

The Rand Corporation 1700 Main Street Santa Monica, California Att: Dr. B. Parkin

The Rand Corporation 1700 Main Street Santa Monica, California Att: D. Morriss

10 West 35th Street Chicago 16, Illinois Att: Document Librarian Avco-Everett Research Laboratory 2385 Revere Beach Parkway Everett 49, Massachusetts Att: Dr. Richard H. Levy

Avco Manufacturing Corp. 2385 Revere Beach Parkway Everett 49, Massachusetts Att: Dr. A. Kantrowitz

AVCO Research Library 2385 Revere Beach Parkway Everett 49, Massachusetts

Aeronutronics Systems, Inc. 1234 Air Way Glendale, California Att: Dr. L. Kayanau

Chance-Vought Corporation Dallas, Texas Att: W. C. Schoolfield

General Dynamics Corporation Electric Boat Division Groton, Connecticut Att: Frank Walker Caldwell

General Electric Company 2900 Campbell Avenue Schenectady 6, New York Att: Library

General Electric Company Research Laboratory Schenectady, New York Att: Dr. H. T. Nagamatsu

Grumman Aircraft Engineering Corp. Bethpage, Long Island, New York Att: Fluid Mechanics Section

Hughes Aircraft Company Florence Ave. ac Teal Street Culver City, California Att: Dr. A. E. Puckett

United Aircraft Corporation East Hartford, Connecticut Att: Mr. J. G. Lee

McDonnell Aircraft Corporation St. Louis, Missouri Att: Library Lockheed Missile Systems Division Research and Development Laboratory Sunnyvale, California Att: Dr. W. Griffith

Norair Division of Northrop Aircraft, Inc. Hawthorne, California Att: Dr. W. Pfenninger

Mr. K. E. Van Every Norair, Division of Northrop Aircraft, Inc. Hawthorne, California

Sulzer Bros., Inc. 19 Rector Street New York 6, New York

North American Aviation, Inc. 4300 East 5th Avenue Columbus, Ohio Att: Mr. R. M. Crone

North American Aviation, Inc. Aerophysics Department 12214 Lakewood Boulevard Downey, California Att: Dr. E. R. van Driest

Republic Aviation Corporation Conklin Street Farmingdale, Long Island, New York Att: Dr. W. J. O'Donnell

Therm Incorporated Aerophysics Section Ithaca, New York Att: D. E. Ordway, Head

MISCELLANEOUS

Pacific Aeronautical Library Institute of the Aeronautical Sciences 7660 Beverly Boulevard Los Angeles 36, California

Applied Mechanics Review Southwest Research Institute 8500 Culebra Road San Antonio, Texas Society of Naval Architects and Marine Engineers 74 Trinity Place New York, New York

Von K. Jacob Computing Center California Institute of Technology 1201 East California Street Pasadena 3, California